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A B S T R A C T   

Accurate and reliable measurements of river flow are critical for a multitude of hydrologic engineering appli
cations. However, flow rate measurements using in-situ sensors are uncertain in many applications and physical 
measurements of velocity may not be practical due to inaccessible sites or flood conditions. Recent advances in 
remote sensing using unoccupied aerial vehicles have overcome these limitations through non-contact mea
surements of river velocities; however, existing approaches have several shortcomings, including the need for 
artificial tracers in the absence of debris and prior knowledge of tracer size, shape, and flow direction. This case 
study seeks to overcome these shortcomings through the development of a system that utilizes drones, video 
imaging, and state-of-the-art optical flow algorithms to measure velocity in rivers. This system was applied along 
Menomonee River in Wauwatosa, WI. To remotely sense river flow, a DJI Matrice 210 RTK drone equipped with 
a Zenmuse X5S camera was used to capture video. The video data from the drone was analyzed using optical flow 
algorithms to generate velocity estimations. River velocity was measured directly at point locations using a hand- 
held velocimeter. Results indicate that the optical flow algorithms estimate the magnitude of surface velocity to 
within 13–27% of hand-held measurements without the use of artificial seeding. These outcomes suggest that this 
system could be used as a possible method to measure velocities in rivers.   

1. Introduction 

Measurements of river velocity are critical for developing engineer
ing solutions to numerous hydrologic problems. For example, velocity is 
necessary for calibrating stage-discharge curves of continuous moni
toring stations, understanding pollutant transport, and designing hy
draulic channels. However, despite the widespread need for accurate 
and reliable measurements of river velocity, direct measurements of 
velocity can be challenging with existing methods that use in-situ ap
proaches. This is because these methods can be unsafe to deploy in flood 
conditions due to extreme flood stage, high velocities, and large river 
debris. In addition, while there are many well established methods to 
measure velocity or discharge, e.g., acoustic doppler current profilers 
[1], current meters [2], and tracers [3], they may also exhibit significant 
errors associated with velocity estimations [4–6], especially during 
flood conditions [7]. Additionally, it is difficult to use these methods to 

measure river velocities in remote areas with inaccessible terrain. Given 
these challenges, new and alternative approaches are needed for col
lecting accurate, safe, and reliable river velocity data. 

Cameras that can collect video of the flow from either fixed locations 
or from drones are an alternative non-intrusive technology that has 
potential to meet many of the challenges associated with existing ve
locity measurement methods. Fixed cameras can be mounted above the 
flow at locations that cross the river such as bridges; however, they rely 
on fixed locations and cannot be deployed on demand such as other 
boat-mounted acoustic doppler current profilers that are commonly 
used to develop flow rating curves for level-based flow monitoring sta
tions. On the other hand, drones i.e., Unoccupied Aerial Vehicles (UAVs) 
have seen an emergence in hydrological applications, such as urban 
stormwater [8], ecohydrology [9], and hydro-morphology [10], due to 
their ability to collect data in high spatial resolution and at on demand 
time scales. Within hydrology, a recent application is the use of drones to 
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measure surface velocity in rivers [11]. Image-based flow measurement 
techniques called Particle Image Velocimetry (PIV) and Large Scale 
Particle Image Velocimetry (LSPIV) have been successfully applied to 
drone videos of river flow to track the velocity of water [12–16]. These 
image-based methods estimate water velocities by using a pattern 
matching technique that measures the similarity of objects in two 
consecutive images using a similarity index using direct cross correla
tion or Fourier transforms [17]. That is, these methods generally parti
tion the video frame into a grid and search the area within a region of 
interest around each grid cell in the next frame for the position that is 
most similar to its corresponding patch. The estimated displacement of 
each patch represents the flow velocity within the corresponding grid 
cell. They have shown promise to measure river velocity 
non-intrusively; however, these methods have practical limitations. One 
important limitation is the need for prior knowledge of the size and 
shape of the particles to be tracked on the surface of the river [18]. 
Therefore, this sometimes requires the introduction of synthetic or 
artificial floating material uniformly across the surface [19]. In some 
cases, such as in extreme floods or rivers with inaccessible terrain, 
external seeding or a prior knowledge of tracer size and shape may not 
be possible. 

A potential alternative method to estimate velocity of river is optical 
flow, which is a computer vision algorithm that computes the 
displacement of pixels between two consecutive image frames. It rep
resents the apparent motion of image objects between these frames 
caused by the movements of objects or camera [20]. Optical flow has 
been applied in numerous object tracking problems, including video 
segmentation [21,22], object tracking [23], vehicular traffic [24], surf 
foam [25], and human movement analysis [26], among others. Unlike 
PIV and LSPIV methods, optical flow does not compute the similarity 
between patches of subsequent video frames. Instead, it directly esti
mates the displacement of individual pixels regardless of the previous 
appearance of the image region surrounding them. Optical flow has also 
been demonstrated as an effective way to measure the velocity of fluid 
flows under experimental conditions [27,28]. This has led to the 
application of optical flow to images of rivers in order to estimate ve
locity [29,30] due to its potential to estimate velocity at higher spatial 
resolutions and without the need of tracers in the river. Specifically, 
optical flow can track the displacement of vectors caused by the velocity 
of water that transfers debris, bubbles, or waves in the direction of flow. 
Unlike other image-based methods, these can be monitored at a 
very-fine scale and therefore do not require larger particles to track. The 
result of the application of optical flow is a dense two-dimensional 
vector field where each vector represents the displacement of points in 
the river from one frame to the next. With a known pixel size and time 
between image frames, this displacement can then be converted into a 
velocity. 

Due to these potential advantages, optical flow has been applied in 
case studies to measure the velocity of river flows, specifically through 
the application or adaptation of the Lukas-Kanade algorithm [18, 
31–35]. While these case studies have shown promise, the Lukas-Kanade 
method is based on simplifying modelling assumptions that limit its 
applicability to low magnitude flows. More recent approaches employ 
machine learning strategies to learn an implicit optical flow represen
tation based on observed video data [36–39]. These methods have 
consistently demonstrated state-of-the-art performance in most bench
mark video datasets for optical flow evaluation [40,41–43]. Hence, 
machine learning approaches are currently the dominant strategy in the 
design of state-of-the-art optical flow estimation algorithms for com
puter vision applications; however, the application of these approaches 
for measuring river velocity is underexplored. 

This study applies a machine learning approach for optical flow 
computation to videos of river flow to estimate surface velocity at a case 
study at a site on the Menomonee River in Wauwatosa, WI. At the case 
study location, we collected videos of river flow using a drone-mounted 
camera and applied an optical flow algorithm to develop an estimate of 

velocity across the entire flow surface. These estimations were then 
compared with ground-truth measurements of velocity using a hand- 
held velocity meter at discrete locations within the river. We also 
discuss the environmental and methodological parameters that influ
ence the accuracy of the proposed method, such as lighting, wind speed, 
and camera resolution. Results suggest that this may be a viable alter
native to other remote sensing methods that use image-based ap
proaches to measure river velocity. In doing so, we present a fast, non- 
intrusive, remote method to measure river velocities. 

2. Material and methods 

2.1. Case study location 

The case study location is a stretch of the Menomonee River in 
Wauwatosa, WI that drains a watershed of approximately 319 km2 

(Fig. 1). This area of the river is relatively shallow (<1.5 m), easy to 
access, and has available space nearby to take off and land the drone. At 
the monitoring location, the river is approximately 21 m wide and is 
characterized by a deeper (1–1.5 m) slow flow (upstream) followed by a 
shallow (0.3–0.6 m) more turbulent flow (downstream) with exposed 
rocks. Approximately 0.6 km upstream of this location is a USGS stream 
monitoring station (number 04087120). This station uses a stage- 
discharge relationship at the stream station to estimate discharge 
based upon measurements of water level [44]. 

Monitoring was conducted during three days in the summer and fall 
of 2019 (Table 1). Weather data, including rainfall, wind speed, wind 
direction, and solar radiation, was collected using a weather station 
located on the Marquette University Campus, which is situated 
approximately 7.5 km away from the data collection site. Flights A and B 
captured data at two elevations, while Flight C captured data at 11 
different elevations. The flights captured a range of flow and environ
mental conditions, with wind speeds ranging from 2.7 to 8.6 m/s and a 
variation in cloud cover as indicated by the range in solar radiation. In 
addition, the flights captured a range of flow conditions from 1 to 30 m3/ 
s. 

2.2. Data collection methods 

Video of the river flow was collected using a DJI Matrice 210RTK 
drone. This drone has a real-time kinematic (RTK) GPS system that al
lows for centimeter-level positional accuracy through the combination 
of dual drone RTK antennas and a ground-based global navigation sat
ellite system (GNSS) mobile station. Because of this GPS accuracy, the 
drone can hover steadily within ±0.1 m horizontally and vertically ac
cording to the manufacturer’s specifications in typical environmental 
conditions [45], which were observed for all three flights. This is 
important for the accurate estimation of pixel size in the videos as it 
allows for data collection at steady elevations. 

Video was collected from the drone with a gimbal-mounted Zenmuse 
X5S camera that filmed in 4096x2160 resolution at 30 frames per sec
ond. We determined the intrinsic camera parameters and lens radial 
distortion coefficients using the method proposed by Strobl and Hir
zinger [46] and implemented in the publicly available OpenCV library 
(https://docs.opencv.org/master/d9/d0c/group__calib3d.html). A 
linear relationship was established between the camera distance to an 
object and the pixel size of the image using 100 images of a 623 × 534 
mm black and white checkerboard pattern comprised of 6x9 squares of 
87 mm, which were captured at distances between 0.5 m and 3.0 m from 
the camera. We verified the accuracy of the camera parameters by 
acquiring images of the calibration pattern at the same heights used for 
data acquisition and estimating the corresponding pixel sizes. To verify 
the drone’s hovering accuracy reported by the manufacturer, we 
captured 490 video frames of the checkerboard pattern with the vehicle 
hovering at an elevation of 15 m and computed the standard deviation of 
the orientation and position of the pattern as observed by the drone’s 
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camera. The average rotation error was 0.4◦ and the average positional 
error was 0.03 m. The higher rotation error was likely due to wind 
disturbances to the drone’s orientation that could not be promptly 
compensated for by the gimbal. Once the camera parameters were 
established, drone video was collected at the elevations shown in Table 1 
for a duration of approximately 30 s each. 

After the flights, velocity data at the surface of the river was collected 
at various points (Table 1) within the river reach using a hand-held OTT 
MF Pro electromagnetic current meter. To capture velocity near the 
surface and reduce the effect that the depth of flow may have on the 
ratio of the measured velocity to surface velocity, we measured the 
velocity with the current meter at 0.15 m below the surface, which also 
satisfied the minimum operating depth of 0.03 m for the meter with the 
operator standing downstream and to the side of the meter. The OTT MF 
Pro meter has an accuracy of ±2% over the range of velocities we 
measured during this study. We placed the meter at each location and 
waited until readings stabilized before recording the velocity. The meter 
takes readings every 250 ms and we used an averaging time of 5 s. 
Within the river, the locations of the handheld velocity data were 
determined from their measured distance from benchmark locations on 
the bank of the river and verified from imagery captured by the drone 
and from a camera near the bank of the river. This hand-held velocity 
data, along with the location of collection, were cataloged within ESRI 
ArcGIS as a point shapefile. This data was used to directly compare the 
results of the optical flow algorithm with measurements from the hand- 
held meter. 

2.3. Algorithm and data processing 

Our proposed approach for surface velocity measurement (Table 2), 
similar to our previous work [47], uses a computer vision algorithm 
called optical flow. 

The classical optical flow formulation is mainly based on two 

assumptions [20]: (1) brightness constancy, which assumes that the 
pixel intensities of an object between two consecutive frames do not 
change, and (2) spatial smoothness, which assumes that neighboring 
pixels tend to have similar motion. 

Consider a pixel with intensity I(x, y, t), where x and y represent the 
spatial location of the pixel at time t. If the pixel moves by a distance 
(dx, dy) in the next frame after a time interval dt, then according to the 
brightness constancy assumption: 

I(x + dx, y + dy, t + dt) = I(x, y, t)+

∂I
∂x

dx +
∂I
∂y

dy +
∂I
∂t

dt + H.O.T.
(1)  

where H.O.T. stands for the higher order terms. Assuming pixel intensity 
remains the same in the next frame, we can say that: 

Fig. 1. Map of monitoring location (left image) and image of the river monitoring location taken from a drone on 8/16/2019 with flow moving from right to left 
(right image); (Basemap source: ESRI). 

Table 1 
Flight details.  

Flight Flight 
date 

Flight 
time 

Avg. 
Stage 
(m) 

Avg. Wind 
speed (m/ 
s) 

Avg. Solar 
radiation (kW) 

72 h Antecedent 
rainfall (mm) 

Elevations (m) USGS station 
average flow rate 
(m3/s) 

USGS gage 
height (m) 

No. of 
measurement 
points 

A 5/10/ 
2019 

9:30 a. 
m. 

0.95 2.7 0.24 16 46, 61 10.5 0.95 8 

B 8/16/ 
2019 

10:00 
a.m. 

0.54 5.2 0.70 1.8 21, 27 1.04 0.54 13 

C 9/13/ 
2019 

1:30 p. 
m. 

1.46 8.6 0.56 71 6, 9, 12, 15, 18, 21, 
24, 27, 30, 33, 45 

30 1.44 14  

Table 2 
Algorithm for river velocity estimation.  

Algorithm.  

Input: Sequence of images It , t = 1, 2,…,n.  
Output: Average distribution of flow magnitude ρ and phase (θ). 

1: for each consecutive image pair (It , It+1) do 
2: Compute flow field 

(
fx, fy, t

)
, (t = 1,2,…, n − 1) from PWC-Net 

3: end for 
4: Obtain the cumulative flow 

(
Fx , Fy

)
=

∑n− 1
t=1 (fx, fy, t)

5: Compute (ρ, θ) from 
(

fx , fy
)

using Eqs. (4) and (5). 

6: for each θ do 
7: if θ < 0 then 
8:  Compute unwrapped phase θu = θ+ 360 
9: end if 
10: end for 
11: Calculate the average flow magnitude ρ = ρ/(n − 1)
12: Convert magnitude ρ from pixels per second to meter per second using Eq. 6.  
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I(x+ dx, y+ dy, t+ dt)= I(x, y, t) (2) 

Therefore, for a single point in a vector field, we can define its 
movement according to the following optical flow constraint equation: 

∂I
∂x

fx +
∂I
∂y

fy +
∂I
∂t

= 0 (3)  

where fx and fy represent the velocity of a point along the x and y di
rections, respectively. 

In the classical formulation, Eq. (2) can be used to compute the flow 
field (fx, fy, t) at time, t. More recent methods have been developed for 
optical flow estimation based on deep neural networks [48]. There are 
several state-of-the-art algorithms to compute optical flow such as 
Flownet [36], Flownet2 [37], TVNet [38], and PWC-Net [39], among 
others. For this study, we used the PWC-Net network, which achieves 
state-of-the-art results on publicly available optical flow benchmark 
datasets such as Sintel [40], Middlebury [41], KITTI [43], HD1K [42]. 
Furthermore, PWC-Net’s low computational requirements allow us to 
process each image frame faster than the camera frame rate, which 
would enable real-time analysis of the data. In this study, we use the 
PWC-Net model pre-trained on the aforementioned datasets. That is, no 
additional training data or manual annotations are used to train the 
network. 

The video data were collected in 4096x2160 resolution; however, 
PWC-Net is a neural network that was trained on images of one quarter 
of that resolution. Rather than training a larger model using upsampled 
versions of the training datasets, we resample the regions of interest 
within each video to a 1024x540 resolution video so they can be pro
cessed by the pre-trained, unmodified model. To avoid boundary arti
facts caused by computing the optical flow near the image borders, our 
region of interest encompasses an area within and beyond the region 
where the ground truth flow is measured. PWC-Net takes consecutive 
image frames of the river flow video as input and outputs the corre
sponding optical flow field, (fx, fy, t). From the optical flow data gener
ated on each image pair by PWC-Net, we remove outliers. Since the 
resolution of the region of interest and the camera frame rate are fixed, 
displacements in pixels per frame have a constant linear relationship 
with displacement in meters per second, which allows us to perform 
outlier removal using flow magnitudes measured in pixels (i.e., flows 
with magnitude lower than 1 pixel per frame and larger than 100 pixels 
per frame). We compute the cumulative flow field (Fx, Fy) in Cartesian 
coordinates (step 4 in Table 2) for the whole video by adding the Car
tesian flow field of each image pair. We then convert the cumulative 
flow to polar coordinate values to generate the cumulative flow 
magnitude (ρ) and phase (θ) according to: 

ρ=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Fx
2 + Fy

2
√

(4)  

θ= tan− 1
(

Fy

Fx

)

(5) 

The phase (θ) in Equation (5) is wrapped at this point, which means 
that it is constrained between − 180◦ < θ < 180◦ and hence can show 
discontinuities at angles near the endpoints of this range. Phase 
unwrapping provides a true azimuth in the direction of the river and is 
performed in steps 6–10 in Table 2. The average flow magnitude (ρ) is 
given by the cumulative magnitude divided by the number of video 
frame pairs (step 11 in Table 2). The average magnitude (ρ) represents 
the velocity of the flow in pixels per frame. We finally convert this 
magnitude to meters per second (ρmps) according to 

ρmps = ρ ∗ ps ∗ fr (6)  

where ps is the size of a pixel in meters and fr is the frame rate of the 
video in frames per second (step 12 in Table 2). From the average of the 
distribution of the magnitude (ρ) and the unwrapped phase (θu) over the 

processed video segment, we generate the histograms and heat maps of 
both magnitude and phase for qualitative and quantitative analysis. Our 
quantitative analysis is based on the mean, median, and mode values of 
the histograms over the flow region. 

2.4. Comparing drone and hand-held velocities 

Vector fields of velocity from PWC-Net were converted into a raster 
dataset by providing the size of each pixel and the latitude and longitude 
of the origin in degrees (i.e., lower left corner of the lower left cell). 
Hand-held velocities were georeferenced into ArcGIS as point shapefiles 
using measured distances from control points on the bank of the river. A 
buffer of 30 cm was created around each hand-held data collection point 
and the average value of the velocity field from PWC-Net within each 
buffer was computed using zonal statistics. This provided us with an 
estimation of velocity from the optical flow algorithm at each hand-held 
data collection location. We then computed the error as the difference 
between the hand-held velocity and the velocities estimated using op
tical flow at each point. 

3. Results and discussion 

3.1. Optical flow algorithm results 

The videos collected by the drone were analyzed and velocities were 
found to be within 13–27% of the hand-held measurements. An example 
of the results from the video analysis is illustrated in Fig. 2 for Flight C at 
a 12-m elevation (results for the remaining flights are discussed in 
Section 3.3). In this video, the optical flow algorithm is tracking the 
velocity of surface particles, including waves, foam, and debris. During 
this video, the average hand-held velocity was 1.38 m/s with a phase of 
about 180◦, indicating flow moving from right to left. Fig. 2(a) shows a 
single image from the video. We performed the analysis on a 15-s video 
clip and averaged the results. Fig. 2(b) represents the average magnitude 
heatmap, and the average magnitude histogram is depicted in Fig. 2(c). 
From the magnitude histogram, we can see that the mode of the velocity 
is 1.37 m/s. 

The mean variance over the video is 0.046 (m/s)2 and the maximum 
is 0.076 (m/s)2. From the average phase histogram in Fig. 2(d), we can 
see that the phase is almost constant at approximately 180◦, which is in 
the downstream direction. 

We also measured the average processing time per frame for each 
step of our algorithm on a workstation equipped with an Intel® Core™ 
i5-8250U CPU @ 1.60 GHz and four NVIDIA RTX 2080 Ti GPUs. Optical 
flow computation is performed on one of the GPUs whereas the 
remaining steps of the algorithm are computed using the CPU. Table 3 
shows the average processing time per frame for each step of our algo
rithm and its corresponding standard deviations. Given the overall mean 
computation time of 38.75 ms, it is possible to process the videos at a 
rate of approximately 25.7 frames per second using a single GPU and 
without resorting to CPU parallelization strategies. Since there are no 
data dependencies among the video frames, all the steps of the algorithm 
can be executed in parallel, leading to an average rate of 102.8 frames 
per second in our workstation equipped with four GPUs. These results 
show that it is possible to process the video frames as they are acquired. 
Developing a system to transmit the frames to a remote computer and 
process them in real-time is part of our future work. 

The camera’s focal distance was found to be approximately 4181.5 
pixels (4182 and 4181 along the vertical and horizontal image axes, 
respectively). Since we resample our region of interest (ROI) to have a 
constant resolution of 1024x540 pixels, the corresponding pixel size is 
8.9 mm, regardless of the elevation of the drone. Pixel size is computed 
using a pinhole camera model. Hence, maintaining a constant resolution 
is equivalent to keeping a constant ratio between the focal length of the 
camera and the elevation of the drone [49]. The maximum pixel error 
caused by radial distortion within the ROI is 1.51 mm. As Fig. 3 
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indicates, the impact of radial distortion within the ROI is minimal. 
Hence, to simplify the overall framework, we do not perform radial 
distortion correction in the video frames. 

3.2. Impact of resolution and brightness on optical flow 

The elevation at which the drone is flown has a direct impact on the 
distance that each pixel represents in space. For example, for the camera 
used in our experiments, at a 45 m elevation, the pixel size is 1.1 cm, 
whereas at 100 m, the corresponding pixel size is approximately 2.7 cm. 
There may be instances therefore in which the algorithm is unable to 
detect movement in pixels due to a combination of a large pixel size and 
a low flow velocity. Conversely, there may be instances in which pixel 
size is small and velocity is high, resulting in such a high pixel 
displacement that the optical flow algorithm cannot capture it. We 
therefore evaluated the relationship between the performance of the 
algorithm and the average pixel displacement (i.e., velocity). In addi
tion, we explored methods to overcome limitations of pixel displace
ments through resampling the video resolution. 

Fig. 2. Illustration of the results generated by our method (a) an image from the video (b) magnitude heatmap (c) magnitude histogram (d) phase histogram.  

Table 3 
Mean and standard deviation of the computation time for each step of the 
algorithm.  

Step Mean (ms) Std dev. (ms) 

Rescale image 0.15 0.05 
Compute optical flow 28.80 0.68 
Outlier removal 1.95 0.22 
Compute mean polar flow 7.85 4.52 
Total 38.75 5.47  

Fig. 3. Region of interest after radial distortion correction with overlaid grid to visualize the impact of radial distortion.  
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An example of the effects of resampling videos is illustrated in Fig. 4. 
Fig. 4(a), (b), and 4(c) represent the velocity of river flow from a com
mon region of interest observed from different elevations that have 
original resolutions of 1600x1600, 656x656 and 416x416, respectively. 
From these three figures, it is clear that as the resolution of the video 
decreases, the algorithm is unable to detect movement within the river. 
This is because the low-resolution videos have pixel sizes that are too 
large to identify visual features in the image, needed to detect movement 
in the flow and because the displacement of these features between two 
consecutive frames may be smaller than the pixel size. To overcome this 
challenge, we increased the resolution of the videos in Fig. 4 (b) and 4 
(c) to 1600x1600 by upsampling them using bilinear interpolation. By 
increasing the video resolution, the algorithm is able to recover most of 
the pixel displacement information and detect movement in the surface 
of the river as depicted in Fig. 4 (d) and 4 (e). These upsampled results 
are noticeably more similar to the high-resolution results in Fig. 4 (a) 
than the corresponding lower resolution videos in Fig. 4 (b) and 4 (c). 
Therefore, these results suggest that for videos with low pixel 
displacement either due to low video resolution, low stream velocity, or 
a combination, upsampling of the video may be used to improve algo
rithm performance. 

As the working principle behind optical flow is based on the 
brightness constancy assumption, variations in video brightness may 
play an important role in the flow field analysis. In a preliminary anal
ysis, we have observed a small variability in the flow estimation results 
as illumination changes. Fig. 5 illustrates the analysis of two different 
videos captured within the same flight. The image in Fig. 5(a) is from a 
video captured during cloud cover and the image in Fig. 5(b) is captured 
during a period of direct sunlight with no cloud cover. As illustrated in 

Fig. 5(c) and (d), as the brightness of the video increases, some of the 
flow magnitude information is lost in regions of higher reflectance, 
which is consistent with other studies that have found that reflectance 
from direct sunlight can produce errors in velocity measurements [50]. 
This is an important consideration in the application of this approach, as 
it is clear that brightness and/or shadows may influence the accuracy of 
the algorithm. As such, quantifying and mitigating the impact of illu
mination changes would be important for future work. 

3.3. Comparison with ground truth velocities 

The hand-held velocity monitoring locations were georeferenced 
within ArcGIS for comparison with the velocity data estimated from the 
drone video. An example of the measurement locations of the hand-held 
meter and the corresponding velocities estimated using the drone videos 
are shown in Fig. 6 for Flight C. For each flight, these measurement 
locations were different depending upon environmental conditions. For 
example, during Flight C, the flow within the middle of the river was 
above chest height, and therefore we were unable to obtain velocity data 
across the entire channel. However, during Flight B, the maximum depth 
was less than 1 m and therefore we were able to collect hand-held data 
across a larger area of the river. 

A direct comparison of the hand-held velocity versus the drone ve
locity at the test points for Flights A, B, and C is illustrated in Fig. 7. In 
the figure, each point corresponds to the flow observed in one of the 
regions highlighted in Fig. 6 (for Flight C) averaged over all the flight 
altitudes listed in Table 1. The drone-measured velocities were within 
15%, 27%, and 13% of the hand-held measurements on average for 
Flights A, B, and C, respectively. The drone estimations are consistently 

Fig. 4. Illustration of the impact of resolution in the estimation of optical flow. (a)–(c) Original videos at three elevations whose corresponding region of interest 
resolution is 1600x1600, 656x656 and 416x416, respectively. (d)–(e) Results corresponding to (b) and (c) after upsampling the region of interest to 1600x1600. 
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lower than those from the hand-held device. This is similar to other 
studies that have found drone-estimated measurements using LSPIV to 
be less than in-situ measurements of velocity [15]. The variation in 
accuracy may be due to several factors including measurement uncer
tainty in the hand-held velocity meter, the proposed image analysis 
workflow, or the pixel displacement of the videos at different velocities. 
Since pixel displacement is a function of the actual flow velocity, under 
similar conditions, we expect flights with lower average flow velocity to 
show higher error due to displacements in the flow that are similar in 
size or smaller than the pixels themselves. This is directly observed in 
our datasets as the average velocities measured using the hand-held 
meter for Flights A, B, and C were 1.23 m/s (15% error), 0.54 m/s 
(27% error), and 1.38 m/s (13% error), respectively. This indicates a 
clear relation between the errors and the corresponding velocities. 

To further explore how pixel displacements influence the error 
within our data, we plotted the percent error for each point against the 

pixel displacement of that point in Fig. 8. As illustrated for Dataset B, it 
appears that as the pixel displacement decreases and approaches one, 
the corresponding error increases as well. This suggests that there is a 
lower pixel displacement threshold impacted by the velocity of the 
water, resolution of the camera, and elevation of the flight for which the 
algorithm is unable to capture the velocity of the river. Hence, camera 
resolution and focal length, as well as the altitude of the drone during 
video capture must be specified based on the expected minimum flow 
that must be measured. Upsampling the images as described in Section 
3.2 would extend the range of flow magnitudes that can be measured 
using the same camera without requiring dramatic changes in altitude. 

As a whole, the average accuracy of our study across all flights as 
illustrated in Fig. 7 is 18%. This error is comparable to that of other 
particle tracking velocimetry studies using drone video that have found 
drone measurements to be within 16–31% of in-stream velocity mea
surements [15,34]. An advantage to our method is that it does not 

Fig. 5. Impact of illumination changes in flow estimation between videos collected 1 min apart. (a) Region of interest with low illumination (b) ROI with high 
illumination, (c), (d) flow magnitude heatmaps of (a) and (b), respectively. 

Fig. 6. Location of hand-held velocity measurements and depiction of velocities derived from drone video for Flight C.  
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require prior knowledge of particle size, shape, or direction, which 
makes its application advantageous in scenarios where this information 
may not be known. Therefore, the method presented in this paper may 
be a viable alternative to remotely measure river velocity without the 
need for seeding of the river. 

3.4. Discussion of results 

In this study, we applied an optical flow algorithm to videos of river 
flow to estimate surface velocities. Results from three flights at a river in 
Wauwatosa, WI indicated that our approach estimated velocities within 
13–27% of hand-held measurements. The outcomes from this study 
suggest that the proposed approach using drone video and optical flow 
algorithms could be a useful tool for measuring surface velocities of 
rivers. An advantage of this approach over in-situ methods is that it does 
not require intrusive measurements of flow rates, which is helpful in 
inaccessible locations or during extreme floods. In addition, it does not 
require external seeding of the river, which may not be possible in 
scenarios where physical or environmental conditions limit the intro
duction of uniform seeding across a river. 

While our study demonstrated the potential of this approach for 
measuring surface velocity in rivers, there were several limitations. 
These limitations include the need for adequate resolution in videos that 
the optical flow algorithm analyzes so that it can properly detect pixel 
movement. As demonstrated, resolutions in which pixel displacement is 
above two pixels provided the most accurate estimates of velocity. This 
pixel displacement is dependent upon the magnitude of the velocity in 
the river, the resolution of the camera, and the elevation of the drone. 
Another limitation is the influence of glare on the river during bright 
conditions; therefore, this approach may not be optimal under sunlight 
conditions in which there is significant glare. This limitation is consis
tent with similar studies where ambient light conditions influence the 
ability to estimate water quality constituents based upon drone imagery 
[51], which indicates it may be a limitation of remote sensing of surface 
waters using aerial images in general. 

In addition, there are limitations of this method that may preclude its 
ability to measure river flow in certain applications. While the DJI 
Matrice 210 RTK can safely fly in rainfall conditions, many drones 
cannot; additionally, the camera on the drone may be damaged if it gets 
wet. Flights during rainfall events are therefore not possible. In addition, 
weather conditions in which there is heavy fog may prevent the capture 
of video of the river. Finally, many quadcopter drones such as the one 
used in this study are limited to flights in winds up to 12 m/s. However, 
even at high wind speeds that are within the manufacturer’s specifica
tions, instability of the drone may result in significant movement of the 
camera, which could impact the results of the algorithm. 

Our approach was not tested during extreme flood conditions; 
however, there are several reasons why we believe that it could be a 
useful tool in those scenarios. During extreme conditions, the level of 
waves, bubbles, and floating debris will be higher, which would allow 
for easier detection of object movement. In addition, the pixel 
displacement at high speeds could be detected at lower spatial resolu
tions thereby reducing errors due to low pixel movement that were 
demonstrated in our study. This would also allow for the collection of 
videos at higher elevations, which would improve the field of view of the 
camera. However, there are other practical limitations that would 
restrict the use of drones in general during extreme floods including high 
wind speeds or heavy precipitation. Higher wind speeds are known to 
cause stability issues that influence accuracy of velocity measurements 
using LSPIV [52], and heavy precipitation precludes flying most drones. 
However, mitigating the impact of drone stability on data collection 
might be possible using data from the drone’s inertial measurement unit. 
Investigating such strategies is part of our future work. 

Our results suggest that the proposed method may be a viable 
alternative to other remote sensing methods that use an image-based 
approach to measure river velocity. Future work could include the 
application of the method under different flow regimes, such as high, 
low, or turbulent flows, or under alternative environmental conditions, 
such as lighting and wind speed. It could also include the direct com
parison of our methodology with other types of optical flow or particle 
tracking velocity methods. In addition, other types of imaging, such as 
thermal imagery that have been shown to be effective for particle 
velocimetry [53], may provide more accurate representations of vector 
movement that could be advantageous for our proposed method. While 
this case study provides a first look at the application of optical flow for 
measuring surface velocity of rivers, the results demonstrate that this 
may be a fast, non-intrusive, remote method to measure river velocities. 

4. Conclusions 

In this paper, we present a technique for river velocity estimation 
using an optical flow algorithm applied to videos captured by drones. 
Results indicate that drone-derived velocities are within 13–27% of 
velocities measured by hand-held meters. While the results show 
promise, more research is needed to evaluate the impact of other envi
ronmental variables, such as lighting, river velocities, debris, and drone 

Fig. 7. Comparison of velocity data from hand-held meter and drone-derived 
velocities from various points measured in the river, where the blue line is a 
1:1 line. 

Fig. 8. Percentage flow velocity estimation error as a function of average pixel 
displacement. 
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instability from high winds, on system performance. However, these 
preliminary results demonstrate that optical flow methods may be 
effective at estimating river velocities from drone videos. This could 
provide a valuable alternative to in-stream monitoring systems for 
estimating river velocities during extreme flood conditions or in areas 
that are not easily accessible for in-situ measurements. 
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