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Abstract

Hurricane Harvey produced unprecedented flooding that altered flood fre-

quency statistics near Houston, Texas. While Harvey could have made landfall

elsewhere along the Gulf coast, traditional flood frequency methodologies only

consider the risk of Harvey in the region that it hit. This may be a shortcoming

of flood frequency methodologies as the intensity of Harvey was greater due to

climate change; therefore, Harvey may be more indicative of future hurricanes

than other historical observations. To that end, this study investigates what

effect Harvey would have had on flood frequency statistics if it had made land-

fall elsewhere. To do so, a Monte Carlo simulation was used to shift Harvey's

rainfall within alternative landfall locations. This rainfall was then applied to

synthetic unit hydrographs to estimate peak flows that were applied in Log

Pearson III and Regional Flood Frequency Analyses. Log Pearson III analyses

with simulated Harvey streamflows produced median 100-year peak flows that

were 17%–66% higher than analyses that only used historical records. A

regional flood frequency analysis in the central coastal geomorphologic region

of Texas showed that predictive equations, based upon basin area and shape

factor, had an average increase of 30.2% in the 100-year peak discharge.
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1 | INTRODUCTION

Hurricane Harvey hit the coast of Texas on August
25, 2017, bringing high winds and torrential rainfall with
a reported maximum measured rainfall of 1539 mm
(60.58 in.) in the Netherlands, Texas (Blake &
Zelinsky, 2017). This rainfall, paired with winds up to
59.2 m/s, resulted in at least 68 direct deaths, 35 indirect
deaths, and $125 billion of damage (2017). It is estimated
that approximately 8%–19% of Hurricane Harvey's inten-
sity was attributed to climate change (Risser &

Wehner, 2017; van Oldenborgh et al., 2017). This inten-
sity had a significant impact on the computation of
design floods, as the flooding from Harvey increased
the 100-year peak flow in the region by an average of
28% using flood frequency statistics (McDonald &
Naughton, 2018).

Flood frequency statistics use historical records of
annual maximum instantaneous peak discharge to esti-
mate the magnitude and frequency of peak floods. These
estimates can then be applied within regional flood fre-
quency analysis to develop equations that predict the
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magnitude and frequency of peak discharges based upon
basin characteristics. These predictions of peak discharge
are critical for the safe design of civil infrastructure such
as dams, levees, bridges, roads, and culverts. Rec-
ommended procedures for regional flood frequency anal-
ysis have been provided by Bulletin 17B (Rallison
et al., 1981), which in March 2018 the United States Geo-
logical Survey (USGS) updated as Bulletin 17C (England
et al., 2019). While the updated procedures acknowledge
concerns surrounding the effect of climate change on
flood frequency, the recommended methods still assume
stationarity within the data. Given studies showing the
impact of climate change on Harvey (e.g., Hassanzadeh
et al., 2020; van Oldenborgh et al., 2017), we know this is
not the case for recent storms (Marsooli et al., 2019; Reed
et al., 2020). This is important to consider, as extraordi-
nary storms such as Harvey have a significant influence
on the flood frequency statistics and therefore are critical
in developing regional flood frequency equations.

Incorporating climate change into flood frequency
analyses would be a prudent approach; however, doing
so is a significant challenge due to the reliance of flood
frequency analysis on empirical data. While there are no
guidelines for incorporating climate change into flood
frequency analysis, Bulletin 17C does offer suggestions
(England et al., 2019). One is a method that couples a
Bayesian statistical approach with a reversible jump
Monte Carlo Markov Chain procedure to develop a non-
stationary precipitation frequency analysis from past data
in a single location; however, this methodology does not
propose a way to translate this modeled precipitation into
streamflow (Ouarda & El-Adlouni, 2011). Another
method calculates flood magnification factors (e.g., a fac-
tor of 2 for the 100-year flood indicates that the 100-year
flood will increase two-fold) and recurrence reduction
factors (e.g., a factor of 2 for the 50-year flood indicating
that the 50-year flood will become the 25-year flood) for
specific basins nationwide using their respective
streamflow data (Vogel et al., 2011). However, this
method does not separate out the multiple sources of
nonstationarity, such as climate change and land-use
change. Beyond those listed in Bulletin 17C, other
methods exist, many of which utilize climate models
(e.g., Griffis & Stedinger, 2007; Srivastav et al., 2014).
While these methods provide opportunities for the inclu-
sion of climate change into flood frequency analysis,
there is an overall lack of consensus on how to do so.

This lack of consensus has led to applications of flood
frequency methods that still assume stationarity in the
data. This is a significant shortcoming as it is generally
accepted that extreme precipitation events exhibit non-
stationary patterns (Vu & Mishra, 2019). By not account-
ing for these patterns, current methods for hydrologic

design of infrastructure, such as flood frequency analysis
and regional regression, are poorly suited for considering
risk from nonstationarity of extreme events (Wright
et al., 2019). In addition, extreme flooding events are
increasingly being attributed to hurricanes (Dhakal &
Jain, 2019), which presents challenges for flood frequency
statistics in coastal regions. Therefore, alternative
approaches to flood frequency are needed to consider the
influence of peak flows from climate enlarged
hurricanes.

In this study, we present an approach to address this
challenge by transferring flood risk from observed hurri-
canes to alternative basins within their modeled landfall
paths through rainfall transposition. Rainfall transposi-
tion has been applied to augment radar rainfall data for
frequency estimations of extreme rainfall (Wright
et al., 2013), in synthesizing long records of rainfall
(Wright et al., 2014), and in explore thing relationship
between peak discharges and spatial moments of rainfall
(Gao & Fang, 2018). Here we apply it to transfer the flood
risk from Hurricane Harvey to other locations within its
modeled landfall path. Because traditional flood fre-
quency analysis is empirical, the risk from these hurri-
canes in a flood frequency analysis is only considered
within the regions that they hit. However, in the case of
Harvey, hurricane prediction models showed that it could
have made landfall in numerous locations along the Gulf
coast (Huttner, 2017). In these locations, Harvey may be
more indicative of current and future hurricanes than
other historical observations due to the influence of cli-
mate change on its intensity.

To that end, the objective of this study is to present a
method to transfer flood risk from hurricanes to other
geographical areas within their modeled landfall path. To
do so, we applied the proposed method to Hurricane Har-
vey to evaluate what impact it would have had on flood
frequency statistics and regional regression equations
had its precipitation occurred elsewhere. Specifically, we
(i) evaluated the probabilistic landfall locations for Har-
vey using the Global Forecast System (GFS) and the
Meteorological Office Global and Regional Ensemble Pre-
dictions System (MOGREPS-G) ensemble models from
Hurricane Harvey, (ii) shifted the spatial rainfall data
from Harvey to two probabilistic locations using a Monte
Carlo simulation, (iii) applied a synthetic unit hydro-
graph method to simulate peak flows from Harvey,
(iv) developed flood frequency statistics using the simu-
lated peak flows and Bulletin 17C methodologies, and
(v) integrated these flood frequency statistics into a
regional flood frequency analysis. Through this study we
hope to contribute to the discussion surrounding the
importance of considering alternative approaches to flood
frequency statistics.
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2 | MATERIALS AND METHODS

2.1 | Development of path probability
distribution

To determine the alternative locations where Hurricane
Harvey could have made landfall, we evaluated ensemble
hurricane track forecasts. Specifically, we used ensemble
hurricane track forecasts to develop probabilistic landfall
maps at 1, 2, 3, and 4 days before landfall. Ensembles
included 6-h interpolations of the United States-based
GFS ensemble (20 ensemble members) and United
Kingdom-based UKMET MOGREPS-G ensemble
(36 ensemble members) that were downloaded from the
Automated Tropical Cyclone Forecasting System (ATCF)
database (ATCF, 2017). Probabilistic landfall for any
given point on the coast was computed using the follow-
ing equation:

P¼MDistance

MTotal
ð1Þ

where MDistance is the number of ensemble members
coming within 111 km or 60 nautical miles distance of a
given point (Sheets, 1985); MTotal is the total number of
ensemble members; and P is the probability that the cen-
ter of the hurricane's eye will come within the designated
distance of a given point. Some ensemble member predic-
tions ended before making landfall on the western side of
the Gulf of Mexico, and because our focus was on landfall
locations, these were not included in our analysis.

2.2 | Shifted Harvey rainfall data

The precipitation data from Harvey was generated from a
total of 963 precipitation gages in southeast Texas from
the National Weather Service and National Oceanic and
Atmospheric Administration (NOAA). From these point
gages, inverse distance weighting was used to develop a
map of the 3-day rainfall total. Then two new regions
were selected for transposing the 3-day rainfall using
region boundaries defined by the USGS (Asquith &
Slade, 1997). The two regions were selected based upon
their location within the probabilistic landfall path and
data availability. Potential regions were restricted to
those that fell within the 25% probability range of landfall
based upon ensemble forecasts. The selected regions also
were required to not be heavily impacted by the original
storm. Finally, each geomorphologic region needed to
have an adequate number of stream gages with 10 or
more years of data and in operation beyond the
year 2000.

Once the two geomorphologic regions were selected,
the 3-day precipitation map was transposed to these
regions using a Monte-Carlo simulation. Using ESRI
ArcMap (Esri Inc., 2017), the 3-day precipitation was
transposed to locations within each defined geo-
morphologic region (n = 1500). The simulation randomly
generated latitude and longitude of the rainfall map
under the constraint that its centroid fell within the
region boundaries. Then using the transposed location,
the volume of rainfall over the watershed of each stream
gage was computed. Finally, the median rainfall volume
that fell over each watershed from the 1500 simulations
was used to estimate peak runoff, as described in the fol-
lowing section.

2.3 | Estimating peak flows using a
synthetic unit hydrograph

The median rainfall volume over each watershed from
the Monte Carlo simulations were used to estimate peak
flows through a synthetic unit hydrograph approach.
Synthetic unit hydrographs define the hydrograph of a
watershed that would result from 1 in. of rainfall and are
commonly applied to estimate peak flows, especially
where precipitation and geographic information for a
watershed is known but streamflow data is unavailable
(Adib et al., 2010; Dawod & Koshak, 2011; Günal &
Güven, 2016; Reshma et al., 2010; Sule & Alabi, 2013).
Once developed, a synthetic unit hydrograph can be
applied to estimate peak discharge for any given storm
event based upon the product of the unit hydrograph
peak flow (m3/s/mm or cfs/in.) and the average water-
shed rainfall in millimeters (or in.).

We estimated peak flows in each watershed using the
Soil Conservation Service (SCS) synthetic unit hydro-
graph method (Ponce, 1989). This is a method to develop
a synthetic unit hydrograph based upon drainage area
and rainfall duration, as shown in the following
equation:

TL ¼ 1:44� A
2:589

� �0:6

ð2Þ

TP ¼D
2
þTL ð3Þ

QP ¼
2:084�Að Þ

TP
ð4Þ

where TL is the lag time in hours; A is the watershed area
in square kilometers; TP is the time to peak discharge in
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hours; D is the duration of rainfall in hours; QP is the unit
hydrograph peak discharge in m3/(s � cm).

Watershed areas were delineated using elevation data
from the USGS National Map Viewer (U. S. Geological
Survey, 2019a) within ESRIs ArcMap (Esri Inc., 2017).
These watershed areas were then used to estimate a
3-day rainfall volume based upon the median precipita-
tion over the watershed from the Monte Carlo simula-
tions. The 3-day rainfall volume was finally multiplied by
QP to get the simulated peak flow.

The method was validated using empirical data by
applying it to 25 stream gages that were impacted by Har-
vey in southeast Texas. The total error between the
recorded and estimated peak flows were estimated based
upon the root mean square error. The total error is
assumed to be comprised of two independent error
sources—measurement error and synthetic unit hydro-
graph error—as shown in the following equations:

ET
2 ¼EM

2þESUH
2 ð5Þ

where ET is the total error in peak flow; EM is the
streamflow measurement error; and ESUH is the synthetic
unit hydrograph error.

This equation can be rearranged to estimate the error
from the synthetic unit hydrograph using the estimated
total error and the measurement error (Di Baldassarre &
Montanari, 2009; Harmel et al., 2006):

ESUH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ET

2�EM
2

p��� ��� ð6Þ

Once validated, the synthetic unit hydrographs were
developed for each of the watersheds in the study.
These unit hydrographs were applied to the median
rainfall volume from the Monte Carlo simulations to
estimate peak discharges at the simulated Hurricane
Harvey locations. Finally, the simulated peak discharges
at each site were used to evaluate how Harvey changed
flood frequency statistics as outlined in the following
sections.

2.4 | Log Pearson III analysis

We developed Log Pearson III flood frequency statistics
in each of the two simulated landfall regions to deter-
mine the impact that Hurricane Harvey may have had on
flood frequency statistics had it fallen elsewhere. To do
so, we computed flood frequency statistics both before
and after simulating peak flows from Harvey. In the lat-
ter case, we chose the simulated peak flow from Harvey
as our annual maximum for 2017.

We performed Log Pearson III flood frequency ana-
lyses using PeakFQ software (Veilleux et al., 2013) and
annual peak flow records from USGS gages
(U. S. Geological Survey, 2019b). Within the PeakFQ set-
tings, we performed our analysis using the Bulletin 17C
Expected Moments Algorithm (EMA) (England
et al., 2019). The weighted skew option within Peak FQ
was used, which combines the station skew and general-
ized skew to create a more accurate measurement of the
skew coefficient for a given watershed. We obtained our
generalized skew values from Plate I of Bulletin 17B, as
updated generalized skew values for the Texas had not
yet been published at the time of the study. We also
applied the Multiple Grubbs-Beck test and included his-
torical peaks in the analysis. To be considered in the
analysis, gages were required to be free of damming or
diversions during their period of record, have a period of
record of at least 10 years, and in operation beyond the
year 2000.

Upon the calculation of flood frequency statistics, we
compared return period flows before and after simulating
Harvey in each region. We then calculated the net
change and percent change in these return period flows
using Equation (7) below.

P¼ S�H
H

�100% ð7Þ

where P is the percent change; S is the flow rate from
analysis using simulated Harvey peak flow; and H is the
flow rate from analysis using only historical observed data.

2.5 | Nonstationarity analysis of peak
flow records

In addition to nonstationarity in our data from simulat-
ing Harvey, there may be other sources of nonstationarity
in the period of record at the gages due to climate or land
use changes. We therefore tested our data for non-
stationarity using three statistical tests. We tested for
abrupt or sudden changes in the data using the Pettitt
test. The Pettit test is an adaptation of the rank-based
Mann–Whitney statistic that tests whether two samples
from the same population (Pettitt, 1979), and it has been
effectively applied to detect abrupt changes in flood peak
records (Barth et al., 2017; Villarini et al., 2011). We
tested for monotonic trends using both the Mann-Kendall
and Spearman Rho tests (Helsel & Hirsch, 2002). These
two tests are commonly used to detect monotonic trends
in flood peaks and using both can provide clearer evi-
dence of a trend or lack thereof in the flood peak records
(e.g., Villarini et al., 2009). The significance level for all
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tests was set to 5%. Together, these tests evaluate if there
is any nonstationarity in our data and help to put our
flood frequency analysis results within the greater con-
text of changes to peak flow data within the watersheds
in this study.

2.6 | Regional flood frequency analysis

Regional flood frequency analysis was performed to eval-
uate the impact that changes in flood frequency statistics
have on engineering design equations. The southern
coast region did not have enough gages for a reliable
regional flood frequency analysis that fit the criteria of
10 or more years of data and in operation beyond the
year 2000; therefore, the analysis was only performed on
the central coast region. The regional flood frequency
analysis was modeled in WREG (Eng et al. 2010) to per-
form logarithmic weighted-least squares multiple-linear

regression. Drainage area, basin shape factor (defined as
the longest flow length divided by watershed area), and
average stream slope were selected as independent vari-
ables for stepwise regression. These were selected
because they were used within previous flood frequency
studies for the regions (Asquith & Slade, 1997). Regional
flood frequency analysis methods would usually consider
a wide range of basin parameters and develop a final set
through stepwise regression methods. However, because
the referenced study was performed on the same water-
sheds and this study is not focused on parameterization
methods, we only evaluated this final set of parameters.
These variables were developed using ESRIs ArcMap and
digital elevation data from the National Elevation Dataset
(NED) obtained through the USGS national Map Down-
load Platform (http://viewer.nationalmap.gov/viewer).
After we performed weighted-least squares multiple lin-
ear regression, we applied the regression equations to the
range of drainage areas and basin shape factors in the

FIGURE 1 Harvey path probability distributions for (a) August 21, 2017, (b) August 22, 2017, (c) August 23, 2017, and (d) August

24, 2017. The black line in (d) represents Harvey's actual path. (source: https://www.nhc.noaa.gov/)
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study area to evaluate the impact that simulating Harvey
would have on engineering design.

3 | RESULTS

3.1 | Probabilistic and simulated landfall
locations

Probability distribution maps of Harvey's projected path
were created using the GFS and UKMET MOGREPS-G
ensemble forecasts during each of the 4 days preceding
Hurricane Harvey's landfall (Figure 1). These maps
show the probability that the center of Harvey's eye
would have come within 111 km (60 nautical miles) of
any given location. In each frame, yellow to red shades
show where Hurricane Harvey's eye was more likely to
hit, while green shades represent regions where
Harvey's eye was less likely to hit. Regions without any
coloration had a near-zero chance of encountering
Harvey's eye.

The probable landfall locations varied considerably
along the Gulf Coast from Veracruz Mexico to New
Orleans, LA over the span of four days. For example, on
August 21, 2017, Hurricane Harvey's most probable path
was near Veracruz, significantly south of where Harvey
actually hit on August 25 (Figure 1a). The following days
on August 22 and 23, the most probable path showed
Harveys landfall shifting north to near Houston, TX
(Figure 1b,c) before shifting south of Houston 1 day out
on August 24th. Not only do the modeled landfall

locations move considerably over time but the ensemble
forecasts cover a significant geographic area, with the
predicted landfall locations even a day out covering the
entire Texas coast (Figure 1d). Given this variability, we
sought to evaluate the impact that Harvey could have on
flood frequency statistics if its significant rainfall had
happened elsewhere along the Texas coast.

Two regions were selected for transposing Harvey's
precipitation data within its probabilistic flow path.
These locations were chosen based upon regionalization
of the state of Texas in a previous flood frequency analy-
sis study (Asquith & Slade, 1997). This study divided
Texas into 11 different geomorphologic regions, three of
which are aligned along the Gulf Coast of Texas. As
shown in Figure 2, Harvey's greatest precipitation
occurred in the northern coastal region. The other two
coastal regions—central and southern—also met the
criteria of stream flow gages with adequate periods of
record.

Once the two regions were selected, a Monte-Carlo
analysis was performed by randomly transposing rainfall
data within each region (n = 1500) and then computing
the median 3-day precipitation that fell over each water-
shed. Results found an average median 3-day precipita-
tion amount of 58 cm (southern) and 67 cm (central)
with an average coefficient of variation of 0.19 (southern)
and 0.25 (central) (Figure 3). The median 3-day precipita-
tion amounts over each watershed were then used to
develop synthetic unit hydrographs to simulate peak
flows from transposing Harvey as outlined in the follow-
ing section.

FIGURE 2 Map of the northern,

central and southern geomorphologic

regions, along with the actual 3-day

precipitation from Hurricane Harvey
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3.2 | Synthetic unit hydrographs

On average, the absolute error between the measured
peak flow and that predicted by the SCS method was 44%
(Figure 4). While some of this error resulted from the
synthetic unit hydrograph method itself, it is likely that
much of it came from streamflow measurement error.
Because Harvey was an extraordinary storm, many of the
flow rate estimates would be derived from water levels
that exceed the calibrated range of their stage-discharge
rating (Turnipseed & Sauer, 2010), which could result in
significant errors in the discharge estimates (Cook, 1987;
Kuczera, 1996). Estimates of streamflow measurement
error in general range between 10% and 20% (Harmel
et al., 2006); however, for extreme events the discharge
measurement error may be closer to 42.8% for a 100-year
flood (Di Baldassarre & Montanari, 2009) or even over
100% in streams with high slopes (Jarrett, 1987). While

Harvey was significantly greater than a 100-year flood,
there is no literature providing estimates of measurement
uncertainty at such extremes. Therefore, we explored the
potential range in our synthetic unit hydrograph error
using 15%–42.8% for the measurement error (EMÞ and
44% for the total error ETð Þ, or the average error between
measured and predicted peak flows. We then applied
these values to Equations (5) and (6), which resulted in
an estimated synthetic unit hydrograph error (ESUHÞ of
10%–41%. While this is based on an assumption of mea-
surement error during extreme flood events that could in
fact be much higher, it provides a general estimate of the
potential range in error within our method to produce
peak flood based upon transposed precipitation data.

3.3 | Flood frequency statistics

Log-Pearson III analysis was performed on peak stream
gage data both with and without simulated Harvey peak
flows, and results indicated that Harvey increased the
average return period flows across all watersheds.
Figure 5 contains box and whisker plots of the percent
change in the estimate design floods across all water-
sheds in both the central and southern region. As shown
in the figure, the median return period increases from 3%
for the 2-year storm to 17% for the 100-year storm in the
central region, and 2% for the 2-year storm to 66% for the
100-year storm in the southern region. We plotted the
change in the 100-year peak flow at each gage location to
evaluate if these changes clustered geographically
(Figure 6). From this figure there were no clear clusters,
and large and small changes in the 100-year peak flows
were generally distributed throughout the entire study
area. These changes in return period floods are similar to

FIGURE 3 Distribution of the (a) median 3-day precipitation

and (b) coefficient of variation across all gages in the Southern and

Central regions

FIGURE 4 (a) Spatial

distribution of the northern

region SUH error and (b) box

and whisker plots of the error

and absolute error across all

gages
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those that occurred where Harvey actually made landfall,
which resulted in an average increase in the 100-year
flood of 30% (McDonald & Naughton, 2018). This out-
come demonstrates that the impact of simulating Harvey
on flood frequency statistics is similar, and in some cases
greater, in other areas along the Texas coast. This is sig-
nificant for flood risk management as a 17%–66%
increase in the 100-year flood could translate to existing
infrastructure that is under-designed.

To further explore sources of error within our data,
we evaluated the impact that the length of record at our
gages had on our analysis. It is known that the period of
record may influence flood frequency results by over-
estimating design flows and resulting in greater error of
the estimates (McCuen & Galloway, 2010). To investigate
this, we plotted the percent change in return period
against years of record for the 5- and 100-year return
periods. As shown in Figure 7, the percent difference
increases with decreasing years of record. This could be

due to greater error of the estimates in gages that have
shorter periods of record. However, even in gages that
have over 50 years of record, the change in the 100-year
return flood in the central region was above 20% in a few
cases.

3.4 | Nonstationarity

Stationarity tests were performed and it was found that
six of the 26 stations had either an abrupt change or
monotonic trend in their data (Table 1). Abrupt
changes were detected using the Pettitt test. Monotonic
trends were detected with the Mann-Kendall and Spear-
man Rho tests, with the Spearman Rho test also indi-
cating whether trends were positive or negative. As
shown in the table, there were five stations that had a
statistically significant abrupt changes (p ≤ 0.05) and
four of these stations also had a negative monotonic

FIGURE 5 Percent change in LPIII

flow rates associated with key return

periods for the central region (left) and

southern region (right)

FIGURE 6 Percent change in peak

flow rate associated with the 100-year

return period for the central and

southern regions
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trend. No stations indicated a positive trend, which sug-
gests that these stations have not seen an increase in
peak flow rates due to either climate or land use
changes.

3.5 | Regional flood frequency analysis

Regional flood frequency analysis was performed in the
central region and resulted in equations that estimated
return period peak flows based upon drainage area and
basin shape factor. The equations shown in Tables 2
and 3 are those from stepwise regression that produced
the best model fit through the pseudo R2, standard
model error (SME), and standard error of prediction
(Sp), while maintaining significance (p > 0.05) for each
of the variables used. For most return periods, the
regression equations used the same variables in both

the historical record analyses and simulated Hurricane
Harvey analyses. However, for the 10-, 50-, and
100-year return periods, the historical record regressions
utilized drainage area and basin shape factor, while
the simulated Harvey regressions utilized only
drainage area.

We used these equations to compute predicted peak
flows with the basin characteristics within our study
and found that this produced an average percent
increase in the predicted peak flows of 5.7%, 11.2%,
18.6%, 19.8%, 29.6%, and 30.2%, for the 2, 5, 10, 25,
50, and 100-year storms respectively. Figure 8 illustrates
the size of this increase across the range of basin char-
acteristics within our study. Figure 8a shows the per-
cent change in peak flows for the 5-year return period,
for which basin drainage area was the only significant
independent variable. As illustrated, for the 5-year
return period there is a change in peak flow ranging
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0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100

P
er

ce
nt

 d
iff

er
en

ce
Years of record (n)

R2 = 0.2588

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100

P
er

ce
nt

 d
iff

er
en

ce

Years of record (n)

R2 = 0.7391

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150

P
er

ce
nt

 d
iff

er
en

ce

Years of record (n)

R2 = 0.4704

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 50 100 150

P
er

ce
nt

 d
iff

er
en

ce

Years of record (n)

(a) (b) 

(c) (d) 

FIGURE 7 Percent change

in Bulletin 17C LPIII flow rate

against the years of record for

(a) the central region 5-year

flood; (b) the central region

100-year flood; (c) the southern

region 5-year flood; and (d) the

southern region 100-year flood

TABLE 1 Pre-2017 nonstationarity test results in the central and southern regions

Region Station Pettit year change detected Pettit p-value Mann-Kendall trend Spearman Rho trend

Central 08164504 Change in 2004 0.0313 No trend Negative trend

08164800 Change in 2000 0.0436 Trend found Negative trend

08176900 Change in 1986 0.0499 Trend found Negative trend

08177300 Change in 2004 0.0470 No trend No trend

08189300 Change in 2004 0.0068 Trend found Negative trend

Southern 08212400 No sudden change 0.1243 Trend found No trend
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from 9.6% to 12.2% across all basin sizes within our
study. Figures 8b shows the result for the 25-year
return period, for which basin area and shape factor
were both significant variables. As shown in this figure,
basin shape factor has the greatest influence in the per-
cent change in peak flows. This is due to a greater dif-
ference in the basin shape factor model variables
between Tables 2 and 3. As a whole, the change in
peak flow predicted by applying regional flood fre-
quency analysis to the Log Pearson III analysis in this
study is important to consider as it produces the types
of equations that are used within engineering designs
to size bridges, culverts, and pipes and other types of
flood conveyance infrastructure.

4 | DISCUSSION

We present a method to transfer flood risk from hurri-
canes to other regions within their probabilistic landfall
path through the development of flood frequency statistics
and regional regression equations. This method is applied
in a case study to evaluate the impact that Hurricane Har-
vey would have had on flood frequency statistics and
regional flood frequency analysis had its precipitation

occurred in two different locations along the Texas gulf
coast. Results indicated that Harvey would have increased
the magnitude and frequency of most return periods
floods, with the median 100-year flood increasing between
17% and 66%. These outcomes suggest that contemporary
hurricanes may have an outsized influence on the estima-
tion of the magnitude and frequency of peak flows and
present several challenges for considering flood risk within
engineering designs.

This study demonstrates that engineers and
policymakers may need to account flood risk from cli-
mate enlarged hurricanes in all areas within their proba-
bilistic landfall paths—not just where they occur. For
example, the 25-year storm in a watershed in the central
region with an area of 400 km2 and a basin shape factor
of 7 would increase from 538 m3/s to 640 m3/s if Harvey
had it made landfall there. This increase of 102 m3/s
could translate into significant changes in infrastructure
design, such as the flood height of a bridge or levee. This
suggests that current infrastructure designs may be
undersized, which supports the notion that traditional
flood frequency methods fail to account for non-
stationarity in precipitation extremes (Faulkner
et al., 2020; Wright et al., 2019). While the results from
our nonstationarity analysis demonstrate that streamflow

TABLE 3 Regional flood frequency

regressions for the central region record

that include simulated Harvey peak

flows

Regression equation Sp (%) Pseudo R2 SME (%)

log(2-year Q) = 1.02 + 0.386*log(DA) 64.18 33.69 60.12

log(5-year Q) = 1.21 + 0.461*log(DA) 43.93 60.58 41.13

log(10-year Q) = 1.29 + 0.506*log(DA) 35.8 73.59 33.28

log(25-yr Q) = 1.46 + 0.651*log
(DA) � 0.411*log(BH)

26.71 88.19 23

log(50-year Q) = 1.39 + 0.597*log(DA) 32.19 82.89 29.42

log(100-year Q) = 1.41 + 0.631*log(DA) 35.59 81.6 32.55

Abbreviations: DA, drainage area in km2; Q, peak flow in m3/s; BH, basin shape factor (dimensionless).

TABLE 2 Regional flood frequency

regressions for the central region record

through 2017

Regression equation Sp (%) Pseudo R2 SME (%)

log(2-year Q) = 1.02 + 0.377*log(DA) 62.74 33.62 58.78

log(5-year Q) = 1.18 + 0.455*log(DA) 48.87 54.94 45.8

log(10-year Q) = 1.39 + 0.624*log
(DA) � 0.554*log(BH)

39.83 73.47 35.84

log(25-year Q) = 1.46 + 0.693*log
(DA) � 0.630*log(BH)

40.22 77.37 35.91

log(50-year Q) = 1.50 + 0.739*log
(DA) � 0.678*log(BH)

44.73 76.05 39.91

log(100-year Q) = 1.58 + 0.768*log
(DA) � 0.731*log(BH)

51.22 72.55 45.75

Abbreviations: DA, drainage area in km2; Q, peak flow in m3/s; BH, basin shape factor (dimensionless).

10 of 14 REGIER ET AL.



records preceding Harvey had not been affected by
changes in climate or land use at a statistically significant
level, the impact of Harvey contradicts assumptions of
stationarity. To that end, Hurricane Harvey is not a one-
off event, as climate change is expected to increase the
intensity of tropical cyclones and hurricanes (Knutson
et al., 2010; Marsooli et al., 2019). Therefore, it would be
prudent if future infrastructure is built in light of these
larger storms, even in locations where the hurricane did
not but could have made landfall.

While the method presented in this study clearly
demonstrates how to transfer flood risk from a hurricane,
doing so as a broad method to incorporate non-
stationarity into flood frequency analysis has several limi-
tations. These include the necessity of a recent extreme
hurricane within the region, as well as uncertainties sur-
rounding transposing precipitation data and translating
that data to peak streamflow data through a model. As
demonstrated through the Monte-Carlo simulation, there
was an average coefficient of variation in the 3-day pre-
cipitation amount of 0.19 and 0.25 in the southern and
central regions, respectively. This provides a general
understanding of the uncertainty in rainfall distributions
from transposing Harvey to these regions; however, there
would certainly be other sources of uncertainty had Har-
vey made landfall in these regions due to differences the
topography of the area, shape of the coastline, and land
use, among other factors. Other methods could include a
more comprehensive approach that tracks not only a sin-
gle event, but a multitude of Gulf storms and their associ-
ated probable precipitation paths. In any case, an
application of this method to quantify changes in flood
frequency would need to acknowledge this uncertainty
and how it may impact the interpretation of the results.

This method does not account for potential
decreases in the frequency of tropical cyclones
(Kirtman et al., 2013; Knutson et al., 2010) or increases
in the frequency of other large rain events (Kirtman
et al., 2013). The strength of this approach for engineer-
ing design is that it modifies an empirical method with
observed storm events, rather than other methods to
incorporate climate change into statistics for engineer-
ing design that rely on climate models or indices
(Griffis & Stedinger, 2007; Srivastav et al., 2014). Fur-
thermore, it has simple steps that can be taken apart
and used with other methods where needed. For exam-
ple, the previously mentioned Bayesian/Monte Carlo
Markov Chain method (Ouarda & El-Adlouni, 2011)
could be used to create inputs for the synthetic unit
hydrographs used in this study.

The outcomes of this study support the need for
research to incorporate nonstationarity into flood fre-
quency analysis methods. To this end, engineers, scien-
tists, and policymakers may find it helpful to utilize
several methods to account for nonstationarity in flood
frequency statistics. This will allow them to assemble a
range of potential outcomes in a manner similar to how
hurricane forecasters employ dozens of models when
tracking a hurricane. Once a range of possible outcomes
has been established, decision makers can choose a plan-
ning strategy that best fits their goals and risk tolerance.
The City of Denver exemplified this approach when cli-
mate models predicted that precipitation contributing to
their water supply may increase or decrease due to cli-
mate change (Waage & Kaatz, 2011). Therefore, this
could be useful as one method among many for consider-
ing the influence of nonstationarity on flood frequency
statistics.

FIGURE 8 Central region percent change in RFF regression based upon the basin area for the 5-year return period (a) and based upon

the basin area and basin shape factor for the 25-year return period (b)
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5 | CONCLUSIONS

This study presents a method to transfer flood risk from
hurricanes to other regions within their probabilistic
landfall path through the development of flood frequency
statistics and regional regression equations. To do so, we
explored the impact that Hurricane Harvey could have
had on flood frequency analysis and regional regression
equations had its precipitation occurred elsewhere along
the Texas coast. On average, our results show that simu-
lating Harvey increased the 100-year peak flow by 17%
and 66% in the central and southern geomorphologic
regions along the Texas coast. Consequently, applying
these return period peak flows in a regional regression
study showed an average increase of 30.2% in the
100-year peak flow upon the incorporation of Hurricane
Harvey simulations. These findings demonstrate that
hurricanes that are intensified by climate change may
significantly alter flood frequency statistics and regional
regression equations in other regions within their proba-
bilistic landfall paths. These changes in design floods
have significant implications for the design of civil infra-
structure for flood risk management.
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