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A B S T R A C T

Advances in computing, collection, and sharing of Earth Observations (EOs) have significantly
improved the potential for integrating EO and water resources models. Inadequate observational
data for the systems simulated have been a persistent limitation in developing robust water re-
sources models. Although various EO datasets have been available for decades, they have been
under-utilized for water resources modeling. This can be due to sensor and product limitations,
including spatial, spectral, and temporal resolutions, and the reluctance of the water resources
community to adopt the state-of-art quickly. Motivated by the dual agenda of engaging the water
resources community on various aspects of integrating EOs with water resources modeling and
understanding the likely factors that limit a deeper integration of EOs in water resources manage-
ment, we investigated the communities' perception of water resources modeling and EO integra-
tion. This paper summarizes the findings of a web-based survey conducted at the annual ASCE-
EWRI (American Society of Civil Engineers-Environmental Water Resources Institute) Interna-
tional Water Congress in 2022.
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The analysis of responses (n = 74) identified limited spatial resolution, atmospheric and
cloud interference, and lack of in-situ validation data as the highest perceived barriers to inte-
grating EOs with water resources modeling and management. Perceptions among different
groups of participants and even within the groups were different. For example, the perceived bar-
riers often differed between researchers and non-researchers (e.g., policymakers and practition-
ers). There were differences in perception among the remote-sensing and water resources re-
searchers within the research community. Even among water resources communities, disparities
existed between the perceptions of respondents who also identified as knowledgeable about re-
mote sensing and those who didn’t. These observations highlighted the need to intentionally de-
velop a convergent group and domain to integrate the disciplines involved and capitalize on the
advancements that have improved the EO for water resources management.

1. Introduction
Water resources management, which includes water quantity and quality for all types of water bodies and their tributary water-

sheds, remains a critical global challenge. The United Nations (UN) Sustainable Development Goal (SGD) 6 recognizes the importance
of water as the core of sustainable development, which is critical for socio-economic development, energy and food production,
healthy ecosystems, and human survival. Water resources management is also vital for adaptation to climate change (Michalak, 2016;
Cui et al., 2023). The 2022 report on the UN SGD report notes that about three billion people depend on water with unknown quality
due to a lack of monitoring. While monitoring challenges differ in different parts of the world, many challenges associated with insuf-
ficient or ineffective monitoring are universal. In addition to monitoring, effective water systems management requires numerical
models that can help managers plan; however, access to in-situ observations to drive numerical models has been scant globally. The
situation is particularly acute in developing and under-developed regions where the resources for observation and monitoring of wa-
ter resources are particularly scant (Kirschke et al., 2020; Nowicki et al., 2020). Even within developed countries, there are significant
regional and transboundary gaps along with data quality and availability issues that limit the water resources management potential
(Josset et al., 2019; Kirschke et al., 2020; Talchabhadel et al., 2021; Jordan and Cassidy, 2022; Wyrwoll et al., 2022).

Water resources modeling is crucial in understanding how a watershed system behaves, its resilience and sustainability, where the
stressors are, where and when to intervene, and the expected outcome of the interventions. The traditional paradigm has been to col-
lect data about a watershed system from multiple sources, such as in-situ point monitoring of water quality and weather patterns, sta-
tic land use maps, and information on geophysical parameters (e.g., soils), to develop a water system model that targets the parame-
ters of interest. This method, at best, provides a static representation of the system, which does not evolve with change (e.g., changing
land use or climate) and often is changed abruptly at a timescale in the order of five years to a decade when the models are updated to
obtain drastically different predictions (e.g., Chesapeake bay model (Hood et al., 2021)). Though many models are based on govern-
ing physical equations (e.g., conservation of energy and momentum), many simplifications and empirical parameters are used. Often,
these parameters are not directly observed but estimated as temporally static quantities with very limited spatial variations during the
calibration process. Such calibration has several known adverse effects on the robustness of the resultant model (Acero Triana et al.,
2019). These modeling schemes were devised in an era where satellite-based Earth Observations (EOs), which can be assimilated to
update the estimated changes at fine temporal and spatial resolutions, were not readily available and have not changed since. Though
shown to be useful for developing water resources models (Sun et al., 2016; Zhang et al., 2017), assimilating EO-based data products
with model-estimated quantities to improve the model state variables and parameter estimation is uncommon outside the research
domains. This creates a scenario where more in-situ data is needed to build and calibrate a robust model than what is available. For
example, in the United States, the Clean Water Act (Copeland, 2012) mandates developing a plan (e.g., total maximum daily loads or
watershed management plan) to mitigate water pollution by restoring the water quality in the water body to its designated use. These
plans often require the development of numerical models to identify sources of pollutants and develop mitigation strategies. Lack of
data is cited as one of the critical inhibitors in developing water system management models or failure of such models to represent the
water systems involved robustly (TMDL A&M TC, 2017). Further, the in-situ observations are often collected at a scale different from
the scale at which the model simulations are carried out or required, thus introducing a representation error (Beven, 2008).

EOs are often perceived to be a solution to the data limitation issues, albeit often without a clear conceptual model pathway for
their integration into modeling. Research has shown how some regions of the United States are ideal for such an integration
(Sridharan et al., 2022), which may be extended globally. Data from several modern satellite platforms are now available free of cost
(e.g., Landsat and Sentinel), and new sensors (e.g., microwave, thermal, synthetic aperture radar) and data products (e.g., soil mois-
ture, evapotranspiration, and chlorophyll-a concentrations) that are critical to water resources modeling are becoming available
(Chen et al., 2022). There is much excitement around integrating remotely sensed data with water system models; however, such inte-
gration potential has yet to be realized in practice. It has been recognized that commonly used water resources models (e.g., SWAT,
HSPF, HEC-RAS) must integrate better with remotely sensed data for robustness (TMDL A&M TC, 2017). But often, these models lack
any mechanism to assimilate spatially discrete EOs (e.g., soil water, vegetation covers, algal bloom size, location, etc.) on a regular
timescale. A preliminary study of reports submitted to the United States Environmental Protection Agency (USEPA) describing water-
body mitigation plans using the Total Maximum Daily Loads (TMDL) report selection tool (Quinn et al., 2019) did not identify reports
of using EOs beyond using it for land use identification. Some reviews and discussions in the literature have documented the integra-
tion of remotely sensed data with water resources models describing the scale of integration and model data requirements satisfied by
the EOs, e.g., Wang and Xie (2018); Quinn et al., (2022). However, in practice, integrating EOs with water system models is often lim-
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ited to satellite data for static land-use maps. Most water system models do not have routines to integrate remotely sensed data, and
the data are not efficiently and reliably available. Tools like Google Earth Engine (GEE), Open Data Cube (ODC), and Sentinel Hub of-
fer platforms combining the data and computations necessary to process EOs. Still, they don’t directly integrate with common water
resources models. Additional challenges related to integrating EOs with water systems models include workforce training and the spa-
tiotemporal resolutions available.

The ASCE-EWRI (American Society of Civil Engineering-Environment and Water Resources Institute) Remote Sensing Applica-
tions for TMDL Modeling Task Committee (RSTC) was established to understand and document these challenges. The RSTC con-
ducted a workshop and a survey at the ASCE-EWRI annual water conference, Water Congress 2022, with a dual purpose: 1) to engage
the water system professionals and 2) to understand the perceived barriers to a more holistic application of remotely sensed data in
water quality modeling and advancements that may be needed for better integration. This paper presents the survey results and iden-
tifies some opportunities for better integrating remotely sensed data with water resources modeling.

1.1. Survey description
Members of the RSTC developed a survey instrument to solicit the perspectives of the water quality modeling community on their

familiarity with and perceived barriers to using remote sensing data (see supplementary for the full instrument). The survey instru-
ment has three broad sections:
1) “About you”—designed to understand the typologies of survey respondents based on their self-identified professional group

associations.
2) “Barriers and Limitations”—a set of questions answered on a Likert-scale on the perceived barriers and limitations of remote

sensing technologies and water resources modeling,
3) “Possible Solutions”—a final set of questions on the perceived efficacy of different solutions to improve the application of remote

sensing for water resources management.
The intended audience of the survey included researchers, practitioners, and regulators/policymakers working in the water re-

sources management domain. The online survey was administered through Qualtrics and sent initially to all participants of the 2022
EWRI Water Congress, an annual event hosted by the American Society of Civil Engineers (ASCE) that brings together different com-
munities working on water management. However, there was no requirement for registration in the EWRI Water Congress to be able
to take the survey. We received 109 responses; however, only 74 had data beyond the initial consent and self-identification. This lat-
ter set was retained for the subsequent analysis.

2. Remote sensing and water resources modeling community
Remote sensing and water resources modeling have developed as two separate scientific domains with a limited intersection. Nev-

ertheless, even back in the 1970s, there were ideas on how remote sensing could assess water resources (Knipling, 1970; Anding and
Kauth, 1970). In recent years, several water quality and watershed parameters have started to be reasonably estimated through re-
motely sensed EOs (Dube et al., 2015; Gholizadeh et al., 2016; Yang et al., 2022). Although remotely sensed data is used to derive wa-
ter resource parameters, integration with water resources modeling workflow has been limited and ad hoc, performed on individual
applications rather than on a widespread basis. Most water resources models were not developed in a manner that conforms to inte-
gration with remotely sensed data at the management scale. Similarly, remote sensing data products/sensors are typically developed
to describe a landscape's physical and biological properties rather than to feed into water resources models. Although remote sensing
communities have developed data products that can inform water resource parameters, such as soil moisture, integration with water
resource models has yet to be widely or consistently realized. Most of the overlap in the literature has been incidental and often an af-
terthought. Remote sensing researchers have focused on methodological approaches to develop water quality and other estimates
from remotely sensed observations. However, using these data to improve understanding of water system dynamics and modeling has
been limited.

Factors such as the type and size of the water body, concentration of contaminant of interest, type of water quality parameters (op-
tically active vs. inactive parameters), and spatiotemporal resolution needed to calibrate water resources models restrict water qual-
ity monitoring applications using satellite based EOs. Nevertheless, to effectively utilize remotely sensed data for water quality mod-
eling, various groups of stakeholders, including domain researchers (both water system and remote sensing), regulators (who develop
incentives to improve water quality and enforce laws), software and computer scientists, and practitioners (who used models and de-
velop management plans) should work together to tackle both the scientific and adoption challenges. In the survey, we strive to dis-
cover the motivations and characteristics of the early adopters of this technology, what could motivate other potential adopters to fol-
low this initial cohort, and the constraints and obstacles to more widespread acceptance and innovation. We also seek to identify uni-
fying visions of the type of integration between models and remote sensing data products that might stimulate further progress.

The survey’s first question helped capture the self-reported groups of the participants (Fig. 1). It may be noted from Fig. 1 that sev-
eral respondents self-identified in multiple groups, e.g., researchers, water system researchers, remote sensing researchers, and data
science researchers. Such knowledge in multiple domains is crucial to understanding the nuances, capacity, and limitations of the
technologies involved.

The respondents include a self-identified mix of researchers (60) (including remote sensing, water resources, and data science do-
mains), practitioners (14), and regulators/policymakers (2) (see supplementary for grouping criteria); note that data science group is
not shown in the plots, but they are included with the researchers. Two sub-groups within the researcher group – water system (19)
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Fig. 1. Overview of the self-identified categories of respondents to the survey. Intersections between several groups are also shown.

and remote sensing (39) – were considered to understand differences in opinion among the responses. The mix is not entirely unex-
pected, as the primary mechanism for survey promotion was based on a water congress that includes water systems, researchers, and
practitioners. A relatively large number of remote sensing experts participated in the survey, which was expected, given the commu-
nity’s interest in actionable and applied research (Wellmann et al., 2020; El Serafy et al., 2021). However, there was a lack of repre-
sentation from regulators and practitioners that needs to be addressed in future surveys. This survey and its subsequent iterations
likely not only gauge the opinions/beliefs of the respondents but may also have the potential to be educational tools. The respondents
could learn about a new technology or application and consider its applicability in their domain. All participants were requested to
rate their participation/understanding of some common remote sensing and water resources modeling technologies (see
Supplementary Fig. S1) on a scale from 1 to 5, with one meaning little or no experience and five an expert. Most remote sensing tech-
nologies scored a high median of more than 3.5, while others scored an average of three (3). However, it seems there was a lack of un-
derstanding of data fusion technologies, with a median of about two. This is not entirely surprising as data fusion is a relatively new
and active research topic.

3. Barriers and advancements
The second and third sections of the survey discussed the perception of barriers and limitations among the participants that inhibit

the use of remote sensing technologies and data products more widely in water resources modeling. With the assumption that the per-
ceived barriers can be both from the water system domain (e.g., the lack of water resources models to take advantage of the remotely
sensed data) and from the remote sensing domain (e.g., lack of appropriate spatial or temporal resolution), the sections were divided
into four questions.

Question 1“Thinking about the adoption of satellite-based remotely sensed data, please rate the prevalence of the following issues
(see supplementary for the list of issues). Please rate on a scale of 1 [not a significant barrier] to 5 [a persistent and significant bar-
rier]. Put N/A if you are unfamiliar with an option.”

Question 2“Thinking about water resources and quality management, please rate the prevalence of the following issues in adopt-
ing remote sensing technology (see supplementary for the list of issues). Please rate on a scale of 1 [not a significant barrier] to 5 [a
persistent and significant barrier]. Put N/A if you are unfamiliar with an option.”

Question 3: “How would you rate the programmatic support for the following agencies (see supplementary for the list of agencies)
? Please rate on a scale of 1 [not a significant barrier] to 5 [a persistent and significant barrier]. Put N/A if you are unfamiliar with an
option.”

Question 4: “Rate the ability of the following advancements to ease some of the barriers in incorporating remote sensing with wa-
ter quality modeling (see supplementary for the list of advancements). Please rate on a scale of 1 [not likely a significant advance-
ment] to 5 [extremely useful]. Put N/A if you are unfamiliar with an option.”

Data collected for these questions is presented in Fig. 2, illustrating the general perception and the difference among groups. Note
that boxplots in Fig. 2 include data from survey participants who self-identified with a particular group; one participant may be in
multiple groups, and the same record may be used multiple times. It is clear from Fig. 2 that there are some divergences of opinion
among groups, but overall spatial resolution and atmospheric and cloud-related issues are the key perceived barriers to the wide-
spread adoption of remotely sensed data. The limited number of modeling parameters that can be parameterized using remote sens-
ing, the cost of obtaining high-quality imagery, lack of in-situ data for validating remote sensing products, and inadequate training on
water quality modeling are generally perceived as the key barriers to using water quality models that can ingest remotely sensed data.
Programmatic support to space and water resources regulatory agencies is not perceived as a significant barrier by any group. Of the
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Fig. 2. Results from the survey were partitioned based on the self-identified association with different communities. Box plots display the lower quartile (Q1) and the
upper quartile (Q3) values of the responses. Orange horizontal lines represent the median of the responses. The responses were recorded on a 1–5 scale, and the num-
ber in the bracket is the number of respondents in each group. Questions 1–10 are on likely perceived barriers for remotely sensed data products usage, 11–18 are re-
lated to water resources modeling issues, 19 and 20 are on programmatic support, and 21–34 are on possible solutions to improve the state of practice. Only two re-
spondents identified as “Regulators and Policy Makers”; therefore, their responses are shown as dots. (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)

solutions tested for the enhancing widespread use of remote sensing in water quality modeling, the role of recommender engines,
web-based decision support tools and convergence between sectors were generally not perceived to be particularly useful.

In the latter figures (3 onwards, and in Supplement), the box plots are comprised of responses from participants who self-identified
as belonging to one group, or an intersection of multiple groups, but each response was used only once. So, for instance, if a partici-
pant identified themselves as a water systems researcher, their responses were binned into that group. However, if a participant iden-
tified themselves as both a water systems researcher and a practitioner, then their responses were binned into the group comprised of
the intersection of water systems researchers and practitioners. We will discuss each question and section in detail in the later sections
of this paper. With a limited data set and the overall purpose of this work to simply provide guidance, not to test a hypothesis, no at-
tempt was made to assess the statistical significance of these results.

Fig. 3. Community perception on the spatial resolution of data products on a scale of 1 [not a significant barrier] to 5 [a persistent and significant barrier].
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3.1. Resolution of remotely sensed data
3.1.1. Spatial resolution of the data products

The spatial resolution of a satellite data product is the measure of the smallest object that can be resolved by the sensor. Spatial
resolution is often represented by the linear dimension of the ground represented by each pixel. The resolution is often a function of
the nature of the platform (e.g., altitude, orbit) and the sensor. Typically, it is desirable to have a finer spatial resolution (each pixel
represents a small linear dimension of the ground); however, the signal-to-noise (SNR) ratio at finer resolution and computation limi-
tations may make other coarser resolutions more attractive for larger water bodies or objects of interest. The finer spatial resolution
satellites (e.g., Landsat, Sentinel-2, and Planetscope), which may be more suitable for smaller inland water bodies/reservoir studies,
are often designed with an SNR for land and not water. As a dark target, water requires better SNR to resolve aquatic properties. Satel-
lite-based sensors have gotten finer, particularly with the advent of commercial CubeSat/SmallSat infrastructure. Here we classify
data products as – low resolution (>60 m/pixel), medium resolution (10–30 m/pixel), and high to very high resolution (<5 m/
pixel). Most of the freely available data sources used by the water resources community are medium to low-resolution, with a rela-
tively long history of data collection that spans decades. Sheffield et al. (2018) have discussed many such platforms and data products
in their review. New datasets with a much finer resolution are also becoming available e.g., Maxar Worldview 3 (Cantrell et al., 2021)
and Planet SkySat (Kim et al., 2022), that allow the assessment and classification of smaller objects of interest, particularly in urban
areas, that can rival data collected from aerial operations. The high and very high-resolution datasets are still not available widely
and often need to be procured, particularly for commercial use. NASA’s Commercial Smallsat Data Acquisition (CSDA) Program and
other similar programs from other space agencies are making commercial data available to some academics and other researchers
(Harrison and Mascaro, 2021; McCarty et al., 2021). Data fusion from multiple sensors has been used to derive higher spatial and tem-
poral resolution imagery. Fusion techniques enabling high and low spatial resolution data to derive high-resolution data products are
also becoming increasingly popular, particularly for land use classification (Vali et al., 2020). These methods rely on establishing em-
pirical relations between the fine (e.g., panchromatic band) and coarse-resolution (e.g., multispectral sensor) data products to derive
a higher spatial resolution data product.

Spatial data are widely used in water resources modeling, and adequate spatial resolution is often critical to represent the water
body, watershed, and other objects of interest. Water resources modeling explores the spatial and temporal relationships between wa-
ter quality pollutants, watershed hydrology, river hydraulics, plant life, solute transport, and other river water pollutants. The spatial
resolution of the data is significant in determining the spatial resolution of the model and various simulated quantities (Cotter et al.,
2003; Baffaut et al., 2015; Fisher et al., 2018). There are several types of minimum input data required across water resources models,
including Digital Elevation Models (DEM), land use and land cover assessment, soil data, and precipitation. And evapotranspiration.
Data integrated into water resources models can also include remotely sensed data such as soil moisture (Abbaszadeh et al., 2020)
reservoir storage (Dong et al., 2023) and evapotranspiration (Huang et al., 2020). Models are known to be sensitive to the spatial res-
olution of the data. A comparison of the effects of the resolutions of DEM, land use, and soils in a Soil and Water Assessment Tool
(SWAT) model indicated that DEM was the most sensitive input variable that affected streamflow, sediment, and total maximum daily
loads (TMDL) predictions (Cotter et al., 2003). DEM are used to capture the topographic features such as channel network, location of
drainage divides, channel length and slope, and sub-catchment properties, and watershed boundaries. A comparison of the delineated
drainage/watershed area showed that the drainage area decreased by 55% using a 10 m DEM compared to a 3.5 m DEM (Roostaee
and Deng, 2020). A similar comparison of the effects of soil data in SWAT model predictions was performed that showed differences
in streamflow and sediment (Geza and McCray, 2008). These observations demonstrate the importance of appropriate spatial resolu-
tion for water resources modeling.

The survey results show that spatial resolution was identified as a significant barrier with a median of about four (4) on a 1 to 5
scale (Figs. 2 and 3). Together with atmospheric effects and clouds, it was identified as the most significant barrier. Community mem-
bers who identify as both water resources and remote sensing researchers or remote sensing researchers rank spatial resolution as a
significant barrier (Fig. 4). However, water system researchers without a remote sensing research background and other researchers
(not remote sensing or water systems) rated spatial resolution as lower at 2.5 and 3, respectively. The reasons for this disparity are un-
clear; perhaps it may be attributed to the different applications of remotely sensed data for different groups of researchers. For exam-

Fig. 4. Community perception of atmospheric and cloud interferences as a barrier on a scale of 1 [not a significant barrier] to 5 [a persistent and significant barrier].
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ple, for assessing non-point pollution mitigation measures (e.g., dry swales), even a resolution of ∼5 m/px is coarse. However, such a
resolution is adequate for identifying land-use types in a watershed. Also, many data products (e.g., DEM) are static and have been
made available from aerial platforms at 1 m or even finer 30 cm resolution for many parts of the world.

3.1.2. Temporal resolution of data product
The temporal resolution of the EO data products refers to the time between data captures for the same area. For most satellite-

derived data products, this is the time it will take for the satellite with the same equipment to pass over the same region. Most remote-
sensing satellites are polar-orbiting satellites with a temporal resolution that generally varies from 1 day to 35 days (Toth and
Jóźków, 2016). Some satellite platforms can act together as a constellation of satellites (e.g., PlanetScope) and improve temporal res-
olution. Recently satellites with limited propulsion are also becoming available that can enable sub-daily and video data capture (e.g.,
Skysat) as well as tasking for capturing images at specified periods of time. Passive and active imagers attached to propelled orbiting
stations, such as ECOSTRESS(Fisher et al., 2020) and EMIT (Green et al., 2020) on the international space station, can also provide
data at different time-of-day; the temporal resolution of data from such sensors may be hard to define which can present another issue
for those requiring consistent overpass times for their applications.

Temporal resolution is essential to capture the watershed’s biogeochemical dynamics such as the changes in streamflow, land-use
change, and climate characteristics (Shuai et al., 2022). An evaluation of the Jason 2 satellite altimetry data products with observed
gauge data showed that the uncertainties in the satellite altimetry measurements might be due to the temporal resolution of the satel-
lite altimeter. It was suggested that 10 days per data point missed significant peak water levels with short duration (Darko et al.,
2023). Similarly, the temporal variability of rainfall data impacts the watershed modeling results. A sub-daily precipitation data is ex-
pected to yield better results than daily data when calibrated to an observed gauge (Huang et al., 2019). There are also exceptions
where a coarser dataset may perform better (Shuai et al., 2022).

The survey respondents did not identify temporal resolution as a significant barrier, with a median of 3 (see Supplementary Fig.
S2). Researchers, however, with expertise in both remote sensing and water quality modeling, did rate temporal resolution as a signif-
icant hurdle with a median rating of 4, at par with spectral resolution. Temporal resolution can be effectively improved by adding
more platforms, developing constellations, and cross-mission coordination, such as harmonized Landsat-Sentinel (Claverie et al.,
2018). These can be especially effective in areas prone to cloud cover, where no coverage may be available for months. Homogeniza-
tion can include higher frequency sub-daily datasets. However, the availability of sub-daily datasets is relatively new and expensive,
limiting usage and demand. Nevertheless, recently developed techniques have shown some promising use of high temporal resolution
imagery for applications such as coastal plume tracking (Johansen et al., 2022).

3.1.3. Spectral resolution of data products
Most satellite-based sensors collect multispectral EOs and use passive sensing systems, which detect and measure the natural radi-

ation emitted or reflected by the Earth's surface, atmosphere, and objects on the Earth. In such passive systems, bands are used to des-
ignate regions on the electromagnetic spectrum where the measurement is being done by the onboard instruments. Multispectral
satellites typically have 3 to 15 bands, but the number of bands can vary depending on the specific satellite and its sensor configura-
tion. Bands are associated with bandwidth, which represents the region that is aggregated by the instrument. These band observa-
tions, sometimes from different platforms, are used to compute EO data products; for example, Landsat 8 Normalized Difference Veg-
etation Index (NDVI) is used to quantify vegetation greenness and is based on bands 5 (Near Infrared [NIR], 850–880 nm) and band 4
(Red, 640–670 nm) of the onboard Operational Land Imager (OLI) instrumentation. Based on the Sun’s emission spectra, absorption
in the atmosphere, reflection, emission from the earth, and other sensor-related factors, the amount of energy available at the satellite
for detection varies widely within the electromagnetic spectra. Often, a tradeoff between band region, spatial resolution, bandwidth,
and desirable signal-to-noise ratio controls an instrument's spectral bandwidth and spatial resolution.

In addition to multispectral, data from hyperspectral sensors, which have a large number of bands (>100) and narrow bandwidth
(<10 nm), are also available at medium or low spatial resolutions (Transon et al., 2018). There is a perception that hyperspectral
imaging, particularly at medium to high spatial resolution, can revolutionize earth imaging for several domains, including agricul-
ture, water resources, geology, and disaster management. The spectral information from hyperspectral remote sensing has been
demonstrated to be helpful in estimating many water quality parameters, including organic matter, chlorophyll, and total suspended
matter concentrations (Brando and Dekker, 2003; Shafique et al., 2003; Boggs et al., 2003; Biology et al., 2014; Behmann et al., 2014;
Rostom et al., 2017; Mbuh, 2019; Flores-Anderson et al., 2020; Zhang et al., 2020; Cao et al., 2021). Hyperspectral data collection
presents some technical challenges related to data volumes and complexity (Paoletti et al., 2019) and is not reasonably available at
the spatial/temporal resolutions needed for most water resources applications. High-resolution data collection with hyperspectral im-
agers needs very sensitive sensors, and the energy in each band is extremely low. Nevertheless, several planned missions tackle these
challenges, such as Pixxel.space [https://www.pixxel.space/], and Planet Tanager [https://www.planet.com/products/
hyperspectral/].

The community identified the spectral resolution as a moderate barrier with a median of 3 (See Supplementary Fig. S3). It may be
noted that water system researchers and practitioners rated spectral resolution as a lower barrier than the general community. Also,
there was significant divergence among the remote sensing researchers. We speculate that perception of the benefits and problems
with hyperspectral imaging and readiness of the technology for application in satellite platforms may be one of the reasons for this di-
vergence. There is a debate on the application and readiness of hyperspectral satellite platforms within the research community.
However, this speculation was not tested in this survey and could be examined in future surveys and workshops.

https://www.pixxel.space/
https://www.planet.com/products/hyperspectral/
https://www.planet.com/products/hyperspectral/
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3.1.4. Advancement in integration
The community rated the advancement in spatial, spectral, and temporal resolution high as a potential method to improve the in-

tegration of remotely sensed data in water resources modeling with a median score of 4 (Fig. S4). It is not surprising, as improving res-
olutions will likely enhance the capacity to detect smaller features and changes. We did not test the difference between spectral, tem-
poral, and spatial resolution in the advancements section. Such differentiation may be possible in future survey iterations, especially
if the response pool broadens and participants increase in numbers.

3.2. Time of satellite overpass
The time of day for overpass is important for EO parameters that vary diurnally (e.g., temperature, primary production, and evap-

otranspiration). Most satellites have relatively similar times of day when they pass over a location. The instantaneous observations
are converted to daily averages for diurnally varying parameters using the empirical relations based on the solar radiation curve, loca-
tion, and other characteristics (Xiao et al., 2021; Liang et al., 2022). Platforms such as the International Space Station (ISS), with
about a 4-day revisit cycle at different times of the day, are particularly attractive for measuring parameters that vary diurnally. The
various time-of-day observations may allow better diurnal variation analysis. For example, it is estimated that the phenomenon of
stomatal closing in response to high heat may have a significant impact on the expected transpiration from large orchards and forests
that are usually not very well understood or accounted for in climate models and sub-daily observations may be able to fill the gap
(Winbourne et al., 2020; Xiao et al., 2021).

Time-of-day issues were not rated highly as a significant barrier, with a median score of 2.5 (See Supplementary Fig. S5). This may
be expected, as many researchers and practitioners do not consider diurnal variations; only very specific applications will need such
characterizations. This may also explain the outliers, who rate this as a persistent and significant barrier.

3.3. Data fusion
Data fusion refers to the process of integrating multiple data sources to produce more consistent, accurate, and useful information

than that provided by one source. Data fusion is often also referred to as image fusion in remote sensing domains, defined as the inte-
gration of images derived from several remotely sensed instruments with different spectral, spatial, and temporal resolutions to gen-
erate a more informative composite image. Combining data from Landsat and MODIS sensors is one of the earliest examples of spa-
tiotemporal fusion approaches. Algorithms such as spatial and temporal adaptive reflectance fusion model (STARFM) (Gao et al.,
2006) and enhanced STARFM (ESTARFM) (Zhu et al., 2010) can compute fine spatial resolution reflectance on the prediction day
with at least one coarse-fine image pair (coarse from MODIS and fine from Landsat) on temporally close days. Numerous other meth-
ods have been developed for image fusion and can be categorized into three levels: pixel-level fusion, feature-level fusion, and deci-
sion-level fusion (Chang et al., 2018). Pan-sharpened data products that are a fusion of multispectral (MS) and panchromatic (PAN)
data, often from the same platform, aimed at generating data products with high spatial (equal to that of the PAN data) and spectral
(similar to that of the MS image) resolution have become widely available (Vivone et al., 2021). Multi-sensor data fusion has also
been broadly applied for object detection, classification, change detection, and target tracking (Dong et al., 2009). Multi-sensor data
fusion provides information required to monitor water quality parameters on a near-real-time basis, which helps decision-makers
take early actions before severe water quality issues occur. However, some of the challenges in generating fused multi-sensor satellite
imagery include preprocessing images for accurate data co-registration, especially for image fusion at the pixel-level (Khaleghi et al.,
2013), availability of concurrently observed data products, propagation of uncertainty and error, and the need for appropriate pro-
cessing algorithms and infrastructure.

Data fusion was not rated as a significant barrier by the survey respondents, with a median score of three (Fig. S6). Researchers in
remote sensing and water quality modeling domains rated it as a more significant (median 4) barrier. Though pan-sharpened data is
becoming more available, multi-sensor data products are not widely available and are often used for research without much wider
dissemination.

3.4. Atmospheric and cloud interferences
The radiation from the sun and reflectance from Earth's surface pass through the atmosphere before reaching the satellites' sen-

sors. Part of this radiation is absorbed and scattered by the atmospheric content. Atmospheric interference refers to the effect of
Earth’s atmosphere on electromagnetic radiation as it travels from a source to a sensor. This interference can cause a range of distor-
tions and errors in data that must be corrected to obtain accurate and useful information. There are several types of atmospheric inter-
ference, including absorption, scattering, and refraction. Absorption refers to the phenomenon where atmospheric gases, such as wa-
ter vapor and carbon dioxide, can absorb certain wavelengths of electromagnetic radiation. This can result in a loss of signal strength
and make detecting certain features or objects more difficult. Scattering is a distortion of electromagnetic radiation by small particles
in the atmosphere, such as dust, smoke, or water droplets. This scattering can cause the radiation to be redirected, making it more dif-
ficult to accurately measure the original source. Refraction is the changes to the electromagnetic waves caused by the changes in the
atmosphere's density. Several techniques, such as atmospheric radiative transfer modeling, image correction algorithms, and filters,
are used to correct these types of atmospheric interference (Moses et al., 2017). Cloud cover is another common atmospheric interfer-
ence that can significantly impact remotely sensed data, especially in the context of satellite imagery. It can reduce visibility by ob-
structing the view of the Earth's surface, making it difficult to acquire clear images (Green et al., 1996; Prudente et al., 2020). This can
result in missing or incomplete data, especially in areas with persistent cloud cover. Clouds can also affect the transmission of electro-
magnetic radiation through the atmosphere. This can result in signal attenuation, absorption, or scattering, leading to errors or inac-
curacies in the remotely sensed data. Further, the shadow effects of cloud cover can affect the interpretation of remotely sensed data.
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To mitigate the impact of cloud cover on remotely sensed data, various techniques can be employed, such as using multiple satellite
sensors, utilizing data from different times of day, and employing algorithms that correct for atmospheric effects (Fraser et al., 2009;
Lin et al., 2013; Eckardt et al., 2013; Li et al., 2019; Sarukkai et al., 2020; Liu et al., 2023). Additionally, some microwave based active
EOs, such as radar, are less affected by cloud cover than optical sensors. They can penetrate clouds and provide data on the Earth's
surface even under cloudy conditions (Prudente et al., 2020).

The survey results show that atmospheric and cloud interference was rated as a significant barrier, with a median of about four on
a scale of 1–5 (Fig. 7). All researchers rated it as a significant barrier. This may be expected as cloud-cover-related limitations are
widely known in the community, but methods such as multi-sensor fusion are not widely used. Further, homogenized multi-sensor
data products that may be able to get around cloud-related issues are still under active research and have yet to be widely available.

3.5. Unfamiliarity with remotely sensed data
EO platforms and sensors are becoming available at a rapid pace (Zhang et al., 2022). The pace of advancement and specialization

required makes it hard to assimilate and operationalize newer data. Likely, many new sensors (e.g., SWOT (Biancamaria et al., 2016))
are not known to the wider water resources modeling community. Further, using such data requires knowledge of sensors, data pro-
cessing techniques, familiarity with new software, and geospatial analysis. Professionals not trained in remote sensing may not be fa-
miliar with the terminology, methods, or tools used to work with remotely sensed data. The perception of unfamiliarity with data be-
ing a barrier to water resources application was low overall (median 2). The only group that rated it higher (median 4) were the
“practitioners” (See Supplementary Fig. S7). Practitioners who identified as researchers rated this not as a barrier (median 1). This ob-
servation reinforces the idea that the penetration of remote sensing methods may be low among non-research practitioners. One-stop
searchable data archives, such as one integrated into GEE, can be highly beneficial for identifying useful data products.

3.6. On-demand coverage
On-demand satellite imaging refers to the ability to request and receive satellite images of a particular location on a flexible sched-

ule, rather than having to rely on pre-scheduled or pre-planned imaging cycles. This capability has become increasingly important in
recent years due to the growing demand for up-to-date and high-resolution imagery for a variety of applications. Typically, aerial
platforms were considered ideal platforms for on-demand remote-sensing coverage. However, with satellite constellations, some on-
demand coverage of a region is possible. For example, Planet through its Skysat constellation, can provide coverage 5–7 times a day
coverage for a region of interest at 50 cm resolution. On-demand satellite imaging allows users to quickly obtain images of a particu-
lar area for various purposes, such as disaster response and recovery, agricultural monitoring, environmental management, and mili-
tary and security operations. Some satellite imaging providers offer services that allow users to specify the location, resolution, and
time frame for their requested images and receive the resulting images within a matter of hours or days. Such capacity is relatively
new and expensive. Lack-of-on-demand coverage was not considered a major barrier (See Supplementary Fig. S8). However, like the
“unfamiliarity with dataset” discussed above, there was a difference between researchers and others.

3.7. Continuity of remotely sensed data
Continuity of remotely sensed data refers to the ability to collect and analyze data over time, consistently and reliably, to monitor

changes in the environment or track trends in a particular phenomenon. Maintaining the continuity of remotely sensed data is impor-
tant because it allows the study of long-term changes in water resources and makes more accurate predictions about future trends. It
also helps ensure that data collected from different sources or at different times can be compared and analyzed consistently and mean-
ingfully. Factors such as sensor calibration and stability, data processing and analysis, data sharing, and continued funding for the ef-
fort will likely affect the continuity. Differences in sensors and orbital characteristics caused by changes in configuration and func-
tionality or because satellites reach their lifespan affect the accuracy and continuity of measurements (Wimberly et al., 2021). Harmo-
nized products can be developed to combine satellite data from different sources into consistent and reliable long-term datasets. How-
ever, the availability and accessibility of harmonized useable EO products depend on the requirements of the corresponding project.
For example, harmonized datasets available for the Landsat program have been available for the last 50 years which are great for vi-
sual land use land cover changes, and such data (combining different Landsat platforms) has been used by the community widely for
land cover land use change detection (Wulder et al., 2022). Data continuity will likely be a crucial consideration of remote sensing ap-
plications in water resources, especially if regulations (e.g., total maximum daily load assessment) integrate such data in assessments
of water bodies. Data continuity, however, was not rated as an important impediment by the community, with a median of three (See
Supplementary Fig. S9).

3.8. Accuracy and precision of remote sensing data product
Accuracy is a critical aspect of any remotely sensed data product and plays an important role in introducing bias into a water qual-

ity model. Precision, on the other hand, plays a role in propagating uncertainty through a water quality model. Inaccurate and impre-
cise data products can lead to erroneous model results, or the need for wider margins of safety, when designing water quality manage-
ment alternatives. Often, accuracy is assessed in two broad categories: positional and thematic (Congalton and Green, 2019). Posi-
tional accuracy deals with how precisely the same location is represented in reference data and remotely sensed imagery. If good posi-
tional correspondence is not achieved, it will lead to thematic errors, e.g., misclassification. Often, positional accuracy is handled by
the data provider and not addressed by the end user. Thematic accuracy assessment typically compares prediction or estimation with
in-situ data, which itself may be erroneous. Assessing the accuracy of EO images is fundamental to most projects using such data, e.g.,
land-cover mapping projects (Strahler et al., 2006). For watersheds and water quality modeling projects, an accuracy assessment may
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help users evaluate the uncertainties associated with incorporating remote sensing datasets into the models or deciding between
available datasets with different spectral or spatial resolutions (Comber et al., 2012). Adequate accuracy assessments of remote sens-
ing data can be time-consuming and costly and depend on several factors, including the type of sensor used, atmospheric corrections,
the spatial and spectral resolution of the data, the calibration and validation procedures employed, and the availability and accuracy
of the ground truth data used for comparison. Also, the incommensurability between the spatial scales of remotely sensed and in-situ
data is an issue. The precision of remote sensing products typically manifests itself through representation error between the scale of
the remote sensing data and the scale of the model representation of processes. The representation error issue must be addressed by
performing a match-up between in-situ measurements and the remotely sensed water quality products to use remote sensing data
products reliably. Very few resources exist for performing this match-up in different parts of the world. In the United States, a first at-
tempt at creating a comprehensive match-up dataset—AquaSAT--was undertaken by Ross et al. (2019) for inland waters. Often, for
assessing spectral accuracy, data from cube-sat and small-sat is compared with reflectance data from other larger satellites, e.g.,
Planet SuperDove with Sentinel-2 (Tu et al., 2022), and geometric accuracy comparisons are performed by looking at similar location
(Dobrinić et al., 2018; Aguilar et al., 2019).

Another important aspect when considering accuracy is the recognition that many derived and ready-to-use EO data products are
indirect modeled estimates, not direct observations, and have associated uncertainty (Wu et al., 2019). They are often derived from
machine learning models or empirical equations that may themselves have a high degree of uncertainty. This will add to the inherent
uncertainty of the water resources models if not properly integrated and assumed to be accurate.

The respondents to the survey did not rate accuracy and precision as a major barrier (median 3). There was little difference among
the different groups (See Supplementary Fig. S9), suggesting that the concept of accuracy and precision are recognized but perhaps
considered not as important as other factors. This may also represent a disturbing lack of concern about the representation error. In
the context of water resources modeling to manage critical conditions, this can result in catastrophic neglect of peak flows and con-
centrations. For some applications, anomalies (changes over space and time) or normalized band differences are more important
(Sharma and Joshi, 2014; Xia et al., 2018) than the accuracy of data itself, which may help mitigate some data accuracy issues.

3.9. Types of water bodies
Different water bodies have different characteristics such as surface area, volume, depth profile, meteorological conditions (wind

velocity, temperature, etc.), chemical composition (salt concentrations, turbidity, etc.), ecology, and biodiversity. These characteris-
tics affect our ability to accurately estimate water quality parameters in situ or with EOs (Kruse, 2018). In-situ water quality sampling
is based on understanding the optical, electrical, and chemical properties of the substance of interest and likely confounding com-
pounds. Typically, only the surface properties are captured by EO platforms, thus limiting the ability to understand profiles and
changes with depth. Nevertheless, EO can be a valuable tool for studying different water bodies, including oceans, lakes, rivers, and
wetlands. Different types of water bodies have distinct characteristics and require specific remote sensing techniques to observe and
analyze them accurately. In oceans, EOs have been used to study ocean temperature, ocean color, ocean currents, and sea level
changes (Akbari et al., 2017). Satellite-based EOs can detect ocean surface temperature and track the movements of ocean currents.
For lakes, EOs can help monitor the physical and chemical properties of lakes (Dörnhöfer and Oppelt, 2016). For example, multispec-
tral satellite images can be used to detect changes in the amount of chlorophyll-a in the water, which can indicate the presence of
harmful algal blooms (Gao, 2015; Li et al., 2020) and turbidity plumes (Caballero et al., 2018). Radar-based sensors can also be used
to measure the lake's elevation and map its bathymetry (Chen et al., 2021). EO data can be used for rivers to monitor river flow and
track changes in river morphology (Piégay et al., 2020). Synthetic Aperture Radar (SAR) is an effective technique for measuring water
flow and mapping river channels (Ciecholewski, 2017) and oil slicks and spills (Jafarzadeh et al., 2021). LiDAR can be used to map
the topography of riverbanks and detect changes in river morphology (Notebaert et al., 2009). For wetlands, EO can be used to moni-
tor the extent and health of wetlands (Guo et al., 2017). Radar sensors can penetrate through vegetation to measure the surface height
of wetlands and map their extent. Multispectral imagery can also be used to detect vegetation health and changes in wetland vegeta-
tion cover.

The nature and type of water bodies were not identified as a particularly important barrier, with a median of three. Researchers
with both remote sensing and water system backgrounds rated it slightly higher than the median. When discussing advances needed,
increasing in-land and open-water imagery was considered important for improving remote-sensing and water quality modeling inte-
gration (see Supplementary Fig. S10).

3.10. Detectable water quality parameters
Some of the water quality parameters monitored by EOs include chlorophyll-a, phycocyanin, phytoplankton, temperature, Secchi

disk depth, colored dissolved organic matter, total organic carbon total suspended matters, turbidity, sea surface salinity, and chemi-
cal and biochemical oxygen demand (Chang et al., 2015; Gholizadeh et al., 2016; Wang and Yang, 2019). Recent reviews on using
EOs for water quality monitoring, e.g., Topp et al., (2020); Samarinas et al., (2023) provide insight into detectable parameters and
mechanisms of the detection. For direct parameter detection, the parameter of interest must be related to an inherent optical property
that satellite-based sensors can measure. This method often requires in-situ data, and the relationship developed cannot be general-
ized. Further, data processing for atmospheric correction, spatial, spectral, and temporal resolution affect the development of such re-
lations between parameters of interest and the optical properties (Kutser, 2009; Gholizadeh et al., 2016). Spectral, radiometric, fluo-
rescence, and thermal analysis have been used with satellite data to detect water quality parameters. Spectral analysis involves using
remote sensing sensors to measure the reflectance or absorption of light by water at different wavelengths. By analyzing the re-
flectance spectra, it is possible to detect and quantify various water quality parameters, such as chlorophyll-a, total suspended solids,
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turbidity, and dissolved organic matter (Elhag et al., 2019; Sagan et al., 2020). Radiometric analysis involves using remote sensing
sensors to measure the intensity of light reflected or emitted by the water surface. Light intensity is related to the concentration of wa-
ter quality parameters, such as chlorophyll-a and TSS (Mouw et al., 2015). Fluorescence analysis involves using remote sensing sen-
sors to measure the fluorescence emitted in the water (Slonecker et al., 2016). This technique can be used to detect and quantify dis-
solved organic matter, which can be an indicator of water quality. Thermal analysis involves the use of sensors to measure the temper-
ature of the land and water surface. The temperature of the water surface can be related to the water quality parameters and can also
be used to detect thermal pollution (Ling et al., 2017). Each technique has its site-specific advantages and limitations and can be used
to detect specific water quality parameters.

The water quality parameters detected were not rated high as a barrier (median 3). The spread around the median is quite wide,
with community members rating it from 1 to 5 (Fig. 5). The cause of this wide range of ratings within the same group is unclear. Nev-
ertheless, advances in detecting more water quality parameters were rated as significant, with a median rating of 4 for improving in-
tegration between water quality modeling and remote sensing (see Supplementary Fig. S11). It is not surprising that a greater number
of water quality parameters will improve integration, as many existing data gaps can be filled in current models with EOs. Hyperspec-
tral and other multispectral multi-band missions offer the best possibility of detecting more water quality parameters.

3.11. Cost of satellite imagery
Satellite images are available both freely, provided by government organizations, and commercially. Economists have assessed the

value of space-based EOs and have generally agreed that the value depends on the application, sector involved, and sensors/plat-
forms, but that is largely unknown (Macauley, 2006; Tassa, 2020; Jabbour et al., 2020). Most natural and water system applications
use freely available imagery and datasets provided by governments, space agencies, and other organizations. Recently, some commer-
cial products that have typically higher temporal and spatial resolution (e.g., GeoEye, WorldView, and PlanetScope) are being used
(Liew et al., 2011; Aguilar et al., 2019; Eugenio et al., 2020; Niroumand-Jadidi and Bovolo, 2021). Often the commercial and free
data products are combined for higher resolution and longer-term assessment (Hively et al., 2019). Many commercial products are
available free of cost for academic research through programs such as NASA CSDA and academic institutes' partnerships with data
providers. For some applications, such as routine reservoir water quality monitoring, the cost of even commercial products is often an
order of magnitude lower than the cost of a robust in-situ monitoring program. Furthermore, integration of remote sensing data into
an existing in situ monitoring program can offer opportunities for efficiencies, such as using remote sensing data to optimize the tim-
ing and frequency of in-situ measurements. Aggregator services such as Skywatch (Jagula, 2022; Skywatch, 2023) bring many com-
mercial EOs together, allowing users to collect the most relevant EOs from multiple platforms available.

The cost of satellite imagery was rated a relatively low barrier overall, with a median rating of 2, albeit a wide range from 1 to 5
(see Supplementary Fig. S12). There was a clear divide between practitioners and researchers. It is somewhat surprising that survey
participants perceived spatial resolution as a significant barrier, but they perceived the cost of imagery as a low barrier, since many
commercial satellite images are available at very fine spatial resolution. This may be because many researchers may be able to acquire
satellite imagery for research purposes (even commercial) free of cost. Perhaps this also indicates that freely available satellite prod-
ucts typically occupy the mental space of the community, and integration of high-resolution data is low. The use of high-resolution
data in water resources modeling is not commensurate with the availability of such data and needs to be incentivized.

3.12. Lack of in-situ data
Data derived through satellite images are a surrogate of the relevant physical parameters. Several algorithms are then used to con-

vert satellite-derived data to physical parameters. Two important questions when performing such conversions are: (1) which of the
spectral algorithms is better, and (2) how accurate is the best spectral algorithm? In-situ data are required to answer these questions.
Ideally, in-situ data should be such that it captures the spatial variability of the relevant physical parameter within an image pixel.
This, however, is rarely achieved because of a lack of resources (Ross et al., 2019). Thus, the average values over a pixel obtained by
the satellite data are compared with the point values measured in situ. This may introduce significant uncertainty into the validation

Fig. 5. Community perception on the parameter observed by remote sensing on a scale of 1 [not a significant barrier] to 5 [a persistent and significant barrier].
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processes depending upon the spatial variability of the physical parameters. For example, the International Soil Moisture Network
(ISMN) maintains in-situ soil moisture data around the globe to be used for the validation of satellite-derived soil moisture data
(Gruber et al., 2019). However, the ISMN data are very sparse, especially in low-income countries. Even within the United States, the
availability of data in databases such as AquaSat (Ross et al., 2019)—the Water Quality database for inland water aligned with Land-
sat 5,7, and 8 varies widely. Further, the water quality parameters are typically highly variable in space. Given these limitations, vali-
dation of spectral algorithms with in-situ data appears to be one major challenge. Further, the exact parameter of interest may not be
available due to differences in how the parameter is defined. It can be challenging to obtain in-situ data that precisely matches the
variables derived from the EO (Malthus et al., 2012). A specific variable's definition or measurement methodology may differ between
the in-situ data collection and remote sensing approaches. For example, how water quality parameters like turbidity or chlorophyll-a
are measured in the field may not align perfectly with how they are estimated from satellite or airborne sensors (Dierssen, 2010).

Unsurprisingly, the survey respondents rated the lack of in-situ data for validation as a significant barrier (Fig. 6), with a median
rating of 4 and several members rating it at 5. This highlights that successful EO for water resources application needs significant re-
sources to be invested in validating and collecting in-situ data. AI and Internet of Things (IoT) guided near-real-time monitoring was
also thought of as an advancement that can help bridge the gap of using remotely sensed data in water resources models. Another im-
portant discussion concerns the homogenization of water quality parameters that allow users to convert EO-based parameters to some
in-situ measure with transfer functions. One strategy can include using portable or aerial spectroradiometers (hyperspectral imagers
or point spectroradiometers) to collect targeted observations that can then be used to develop regional models that can extend to the
EOs; see Schaepman (2007); Milton et al., (2009) for a review of processes. Coordinated datahubs, such as the EU Environment
Agency Waterbase-Water Quality ICM [https://www.eea.europa.eu/en/datahub/datahubitem-view/fbf3717c-cd7b-4785-933a-
d0cf510542e1], NASA SeaBASS [https://seabass.gsfc.nasa.gov], UN Environment Program GEMStat [https://gemstat.org/data-
gemstat/], and National Ecological Observation Network (NEON) data [https://www.neonscience.org/data] can provide some in-situ
observations too.

3.13. Usage of remotely sensed data in water quality models
Water resources modeling has a rich history; the basic structure of most modern water resources models were developed in 1970-

the 80s and have since been updated (Council, 2001; TMDL A&M TC, 2017; Camacho et al., 2019). They are also commonly used for
regulatory requirements such as TMDL development. Though some models have a map-based interface, they were not designed to in-

Fig. 6. Community perception on the in-situ data availability for the validation of remotely sensed products on a scale of 1 [not a significant barrier] to 5 [a persistent
and significant barrier].

Fig. 7. Community perception on the role of AI, IoT, and near-real time monitoring on improving integration between remote sensing and water resources modeling on
a scale on of 1 [not likely to be a significant advancement] to 5 [extremely useful].

https://www.eea.europa.eu/en/datahub/datahubitem-view/fbf3717c-cd7b-4785-933a-d0cf510542e1
https://www.eea.europa.eu/en/datahub/datahubitem-view/fbf3717c-cd7b-4785-933a-d0cf510542e1
https://seabass.gsfc.nasa.gov/
https://gemstat.org/data-gemstat/
https://gemstat.org/data-gemstat/
https://www.neonscience.org/data
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terface with remotely sensed data. For example, though some data products can be used for calibration or validation of the model, the
assimilation of remotely sensed data products when they become available at different time-step to perhaps estimate other complex
and hard-to-know state variables, is not supported. Further, different water quality models incorporate different levels of spatial de-
tails in their process descriptions. The scale at which model simulations are available and the scale at which remote sensing data are
available may not be aligned. Even if models could incorporate fine-scale remote sensing data, the model may not be capable of han-
dling the increase in processing power needed to cater to the smaller spatial processing units. These problems make it difficult to in-
corporate remotely sensed data into modeling.

These problems were rated as a moderate barrier, with a median rating of 3 by the survey respondents (see Supplementary Fig.
S13). Water system researchers, who are most likely to be familiar with the models, rated it even lower (median 2). These results per-
haps indicate a difference in understanding about the capability of models and the relevance of remote sensing data to water re-
sources models. When discussing the role of new water resources models, AI, and data assimilation in integrating water resources
models with remote sensing data, it was rated of high importance with a median of four (Fig. 7). It was also noted that water system
researchers with a remote sensing background rated it very high (median 5) but those without a remote sensing background rated it
lower (median 3). This divergence is perhaps due to the lack of guidelines within the water system research community on how re-
motely sensed data may be used.

3.14. Computing infrastructure
Satellite data are spatiotemporal data that require large storage space, often in the order of terabytes, even for small projects. Also,

the processing of satellite data requires significant computing power. Often, these facilities are available for non-commercial use
through research supercomputing networks and others. For commercial uses and locations without ready access to adequate comput-
ing resources, especially in developed nations, this can be a problem. The advent of platforms such as GEE, Open Data Cube (ODC),
and other cloud-based computing resources has made accessing computing and data together easier. GEE is a Google-supported en-
deavor free of cost for academic and not-for-profit research with an extensive library of co-located data and computational capacity
(Gorelick et al., 2017). GEE has extensive documentation and community support. ODC is an open-source software project designed
to manage and analyze large volumes of EO data. Its functionalities center around simplifying access to and exploitation of EO.
Though ODC may not directly provide compute capacity, the libraries make it easier to process EOs and leverage cloud-optimized
geospatial datasets in any cloud environment. It is also connected with GEE, which allows access to a larger library of datasets.

The survey respondents did not consider the computing infrastructure a significant barrier, with a median of two (see
Supplementary Fig. S14). However, there was a clear divide between the water resources and remote sensing researchers. Remote
sensing researchers, who are likely more acquainted with computing requirements for running models with remote sensing data, rate
it slightly higher (median 3).

3.15. Access to remotely sensed data
To use EOs, one must first be able to find and access that data. There are many data distribution platforms in which collect and

make EOs available. Most such platforms are controlled by the entity that collects and disseminates the data. These entities can be
public (e.g., NASA, CNES, ESA, etc.) or private (e.g., Planet, SkyWatch, Maxar, etc.). There are several data aggregation platforms,
such as Google Earth Engine (Gorelick et al., 2017), Planet Explorer [https://developers.planet.com/docs/apps/explorer/], Skywatch
[https://skywatch.com/], Descartes Labs [https://descarteslabs.com/], Radiant Earth Foundation [https://radiant.earth/], EOS Data
Analytics [https://eos.com/], Earthdata [https://www.earthdata.nasa.gov/] (Earth Data, 2023) and Terrascope [https://
terrascope.be/]. These platforms include collecting remotely sensed data from sensors and data products and provide a range of tools
for data analysis and visualization, including web-based viewers and application programming interfaces (API) for programmatic ac-
cess to data.

Access to remotely sensed data was a moderate concern among the survey respondents, with a median of three (see
Supplementary Fig. S15). Not surprisingly, remote sensing researchers had the lowest score (2), indicating that those who primarily
conduct research with remotely sensed data can find and access data. However, among those who identified themselves as remote
sensing and water system researchers, this increases to 3. The scores increased for those who identified as a practitioner (a score of 4)
and a regulator (a score of 5).

When discussing advancement, improved accessibility, data sharing, and data management were rated high as tools that can be
improved for improving water resources modeling and remote sensing integration. However, tools such as recommender engines
(that can recommend data based on usage), and tools for decision-making were rated lower (median 3). This lower rating may be due
to the lack of existing prevalence of such tools, where there is no unique method to query all remotely sensed data sets of relevance for
water resources. This low weight likely indicates inertia in the status quo that is unlikely to change unless information systems, com-
puter science, and data science research mature to a point where remote sensing products are available as ready-to-use products that
can be readily ingested into water resources models. Increasing popularity and acceptance of standards, such as Cloud Optimized Ge-
oTIFF (COG), may also help. Traditional EO dataset files aren't designed for efficient web access, often requiring the download of the
entire file to access a small part of the image. COG addresses this by structuring the file to allow easy access to small portions of the
file over the web.

3.16. Personnel training
It may be the case that those who are interested in and would benefit from using remotely sensed data for water quality modeling

do not have training in it. Typical engineering programs, even at a graduate level, focus on fundamentals of hydrology, hydraulics,

https://developers.planet.com/docs/apps/explorer/
https://skywatch.com/
https://descarteslabs.com/
https://radiant.earth/
https://eos.com/
https://www.earthdata.nasa.gov/
https://terrascope.be/
https://terrascope.be/
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and modeling approaches, and may not have courses that explicitly focus on how to obtain, analyze, and assess remote sensing data.
Even courses that teach Geographic Information Systems (GIS) and geospatial modeling may omit remote sensing data for estimating
water quality or other important parameters for water systems modeling. Given that the domain is new compared to other more es-
tablished topics and there is limited curriculum around the topic, it was not surprising that the overall personnel training was found
to be high barrier with a median score of 3.5 (Fig. 8). This was lowest among remote sensing researchers (median 2) and highest for
practitioners, water systems researchers, and regulators (median 4). Similar to access, personnel training may be a perceived barrier
for those whose profession is not explicitly focused on remote sensing. Advances in personnel training were thought of as important
(median 4) to better integrate remotely sensed data with water resources modeling.

3.17. Programmatic support
Programmatic support from involved agencies includes the availability of resources, training materials, or customer support for

end users and incentivizing convergence. This was not perceived as a particularly high barrier (median 3). Although the barrier was
not considered a significant issue, improving support was rated as a high-impact advancement (median 4). State and Federal rulemak-
ing agencies can play a critical part in integrating the remote sensing and water resources modeling field by developing incentives,
guidelines, and regulations that allow and encourage the use of remotely sensed data, also by testing and piloting programs that
demonstrate the benefits and barriers of such operational integrations.

3.18. Convergence
Remote sensing, water resources, and, to some extent, computer science communities face similar challenges in developing better

models or “digital twins” of their respective systems. The advantages of such systems are tremendous as they let us understand com-
plicated systems better and how interventions can be better utilized. Though different domains have been working on the problem,
their ontologies (what does the world look like), epistemologies (what can be known about the world), methodologies (how to under-
stand the world), and axiology (what is the role of the research and researcher) vary, and concordance is necessary for convergence
(Blair and Buytaert, 2016; Wesselink et al., 2017). Often, remotely sensed parameters for water quality are based on optical activity
directly or indirectly associated with the parameter (e.g., color, turbidity). However, many of the water quality models don’t estimate
or utilize these parameters. By leveraging our understanding of water systems dynamics, we can perhaps better estimate some non-
optically active water quality parameters. The convergence required to integrate water resources modeling and remote sensing is
likely not limited to researchers, but practitioners and regulators must be engaged. Forging a convergent research group can be chal-
lenging, as it involves bringing together individuals with different backgrounds, skills, and perspectives and aligning them towards a
common research goal. Research in convergence in different domains has identified some barriers (Council, 2014; Seeber et al., 2017;
National Academies of Sciences, 2019,; Ernakovich et al., 2021) such as communication barriers, e.g., if team members speak different
languages, come from different disciplines that have different nomenclature or have different levels of expertise, this can lead to inef-
ficiencies; misaligned and conflicting priorities, e.g., if a team member may have their own priorities, goals, and research interests,
which can create conflicts within the group; lack of trust and collaboration, e.g., if members don't trust each other or don't feel comfort-
able collaborating, it can lead to a breakdown in teamwork and lack of progress; inadequate leadership, resource constraints, e.g., lim-
ited funding, time, and access to equipment can pose significant challenges for a research group; lack of diversity and inclusion, re-
search groups that lack diversity in terms of gender, ethnicity, or socio-economic backgrounds may struggle to generate new ideas
and perspectives. Further, if team members feel excluded or marginalized, it can lead to a lack of motivation and engagement; and
personal issues, which are magnified as many researchers have to commit time together to work on a problem. However, it is impera-
tive to make scientific progress that affects water resources modeling positively to strive for the long-term goal of convergence.

The community did not rate convergence as an especially high advance, with a median of three. This was a surprising result, as
many of the other advances rated highly could be achieved through convergence. We suspect that convergence is still novel even in
the research domain and not properly incentivized in academia.

Fig. 8. Community perception on the lack of personnel training as a barrier to the integration of water resources modeling and remote sensing on a scale of 1 [not a sig-
nificant barrier] to 5 [a persistent and significant barrier].
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4. Outlook and conclusions
Spatial resolution, atmospheric interferences and clouds, and lack of in-situ data were perceived as the major barriers to integrat-

ing EOs with water resources modeling. Advancements in sensor technologies, smart processing, and fusion algorithms can help rem-
edy many of these perceived barriers. There have been significant advancements in spatial resolution with commercial EO, especially
at very high resolutions (<5 m/pixel) scale. Even larger satellites are striving for higher resolutions. For instance, the next-generation
Landsat is expected to have data at 10-m resolution. Further harmonizing and fusing the datasets will help mitigate some cloud cover
issues. Several studies have combined data from different sensors, including SAR-optical, to address cloud cover limitations. Some of
these harmonized data (e.g., Landsat Sentinel 2 Harmonized data (Claverie et al., 2018)) are available on a continental scale in data-
sharing platforms like the GEE.

In-situ monitoring, however, remains a challenge. There have been four major issues with in-situ water resources data: 1) inade-
quate collections, (2) scale mismatch between in-situ and remote sensing data, 3) disaggregation and lack of sharing, and 4) the un-
clear provenance and reliability of available data from various sources. The water informatics community has been struggling with
these problems for a long time and has developed sharing frameworks such as WaterML (Valentine et al., 2012). However, adoption
has been slow and limited to more developed countries. More coordination and resources on a grander scale are necessary to make
these data available globally. Projects such as AquaSat (Ross et al., 2019) and RiverSR (Gardner et al., 2021) will be crucial for future
model developments. Another issue is that of uncertainties associated with the remotely sensed data. The measured remotely sensed
entity is typically converted to a physical quantity using an interpretation model. Comparison of in-situ data with the interpretation
model partly reduces the uncertainty, but not all. Acquiring and converting sensor observations to surface reflectance requires the de-
velopment of empirical models that involve numerous assumptions about the target and the atmosphere. These models are estab-
lished for large satellites but are prone to errors, particularly for smaller platforms (e.g., small/cube-sat) (Li et al., 2021; Florczak et
al., 2022). The uncertainties associated with the interpretation models must be quantified to integrate the EO products with water re-
sources modeling properly. Platforms such as GEE and ODC can enable deeper integration between water resources models and EOs.
Both GEE and ODC allow on-demand retrieval and processing of relevant EO datasets. The fact that they can be programmed using
Python opens many opportunities for quick linkages with water resources modules in platforms such as Landlab at timestep scale
(Barnhart et al., 2020).

Another finding from this survey is that the stakeholders have different perspectives and rate the problems with EOs and advances
needed differently. Investments in convergence and education will better align the expectations of different communities and future
acceptance. Although there is mixed evidence of success (e.g., bioinformatics (Council, 2014)) and lack thereof (Ernakovich et al.,
2021) in fostering convergence in other domains, we argue that it is imperative to try and forge this convergence. The data and mod-
eling needs for water resources management are too large and integrating with EO can help mitigate these issues at a global scale.

The analysis represents an initial and novel effort to identify the gaps in the understanding and barriers to implementing EOs for
water quality management. Although the number of respondents was limited to fewer than 100, and there were some clear imbal-
ances in the constitution of the group, the insights gained from this survey will allow us to refine the remote sensing workshop and
subsequent iterations of this survey. We intend to conduct this survey periodically, and over time, it will allow us to identify temporal
and institutional trends across disciplines in adopting EOs for water resources management. We expect future survey structures to be
updated to reflect what we have learned from this survey and accompanying discussions. However, sufficient similarity will be main-
tained to allow comparisons. The survey and the results also serve an important educational purpose by exposing readers to the re-
search trends and likely areas of advancement. A lack of awareness about EO or the perceived requirement of specialized skill sets
may be hindering their widespread implementations to some extent. Practitioners are often unaware of the myriad data products that
are available. Subsequent iterations of our survey will explore these areas further and identify online platforms that bridge the knowl-
edge gaps and accessibility of remote sensing products prevalent today.

The survey did not discuss crop yield, crop stress, or groundwater-related issues impacting the water system. Understanding crop
yield and water stress is important for water resource modeling as it provides valuable insights into the availability and demand of
water resources. Remote sensing methods have been used for large-scale groundwater recharge estimation, typically by measuring
groundwater storage fluctuations. For example, the Gravity Recovery and Climate Experiment (GRACE) satellite measures water stor-
age anomalies at very coarse resolutions (300 km), which can help set model boundary conditions for large-scale water resource mod-
els. These topics will be included in future iterations of the survey.

There is no doubt that EOs will impact water resource modeling. The promise of EOs being globally available and breaking tradi-
tional regimes of data “have” and “have-not” would rely on training the right personnel, sharing of in-situ data, and new algorithms,
e.g., transfer learning (Xie et al., 2016; Naushad et al., 2021) that can use the limited data to calibrate the models necessary for EO
and water resources integration. Besides providing direct measurements of the water quality of water bodies (e.g., for algal blooms),
EOs can be used to prioritize what to monitor with limited in-situ modeling efforts. Within the United States, when and where to mon-
itor has been opaque, with no clear guidance from the Environmental Protection Agency (EPA), which has been detrimental to under-
standing the true magnitude of waterbody degradation. Even in more monitoring-focused frameworks such as the European Water
Framework Directive (WFD), less than 50% of the surface water bodies are deemed sufficiently monitored for ecological status and
less than 30% for chemical status (Kristensen et al., 2018). This highlights the lack of resources needed for comprehensive in-situ
monitoring and prioritizing monitoring locations based on criteria such as the likelihood and impact of water quality changes. EOs
can be utilized globally, which will be useful in both developed and developing nations and, in turn, help with broader adoption.
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